K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.

27 tháng 8 2019

Đáp án D

Qua O dựng đường thẳng P Q ∥ A B . Vậy P, Q lần lượt là trung điểm của AD và BC.

Qua P dựng đường thẳng P N ∥ S A . Vậy N là trung điểm của SD

Qua Q dựng đường thẳng Q M ∥ S B . Vậy M là trung điểm của SC.

Nối M và N thiết diện của (P) và hình chóp S.ABCD là tứ giác MNPQ.

Vì P Q ∥ C D , M N ∥ C D ⇒ P Q ∥ M N . Vậy tứ giác MNPQ là hình thang.

Ta có P Q = A B = 8 $ , M N = 1 2 A B = 4, M Q = N P = 1 2 S A = 3 . Vậy MNPQ là hình thang cân.

Gọi H là chân đường cao hạ từ đỉnh M của hình thang MNPQ. Khi đó ta có 

H Q = 1 4 P Q = 2 ⇒ M H = M Q 2 − H Q 2 = 5

Vậy diện tích của thiết diện cần tìm là  S = ( M N + P Q ) M H 2 = 6 5 .

5 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

3 tháng 12 2021

Qua G kẻ đường thẳng d song song với AB.

\(H=d\cap SB;K=d\cap SA\)

Kẻ KP//AD, HT//BC \(\left(P\in SD;T\in SC\right)\)

\(\Rightarrow KHTP\) là thiết diện cần tìm.

\(\dfrac{HK}{AB}=\dfrac{HT}{BC}=\dfrac{KP}{AD}=\dfrac{PT}{CD}=\dfrac{2}{3}\)

Mà \(AB=BC=CD=DA\Rightarrow KH=HT=TP=PK\)

\(\Rightarrow KHPT\) là hình vuông.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) S là điểm chung của hai mặt phẳng (SAB) và (SCD) mà AB // CD

Từ S kẻ Sx sao cho Sx // AB // CD nên Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

b) Gọi E là trung điểm của AB

G là trọng tâm tam giác SAB nên \(\frac{{EG}}{{SE}} = \frac{1}{3}\)

N là trọng tâm tam giác ABC nên\(\frac{{EN}}{{EC}} = \frac{1}{3}\)

Theo Ta lét, suy ra GN // SC mà SC \( \subset \) (SAC). Do đó, GN // (SAC)