Tìm giá trị nhỏ nhất của biểu thức: H = x(x+1)(x+2)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
H = x(x+1)(x+2)(x+3)
=x(x+3)(x+1)(x+2)
=(x2+3x)(x2+3x+2)
Đặt t=x2+3x ta có:
t(t+2)=t2-2t+1-1=(t-1)2-1\(\ge1\)
Dấu = khi \(t=1\Rightarrow x^2+3x=1\Rightarrow\)\(x_{1,2}=\frac{-3\pm\sqrt{13}}{2}\)
Ta có: H = x(x+3)(x+1)(x+2) H = (x2+ 3x)(x2 + 3x +2) H = (x2+3x)2 + 2(x2+3x) H = (x2+3x)2 + 2(x2+3x)+1 – 1 H = (x2 + 3x +1)2 – 1 ⇔H ≥ - 1 , Dấu ‘ = ’ xảy ra khi x2 + 3x +1 = 0 ⇔x =-3+căn5 chia 2 Vậy giá trị nhỏ nhất của H là -1 khi x =-3+căn5 chia 2