cho x,y,z là độ dài 3 cạnh của 1 tam giác chứng minh A=4x^2y^2-(x^2+y^2-z^2)^2>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Ta có:
x2y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0
\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0
\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)
Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.
mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
Thêm 3 zô mỗi zế , quy đồng mẫu thức rồi suy ra
\(\left(y+z-x\right)\left(x+z-y\right)\left(x+y-z\right)>0\)
từ đây suy ra hai trong ba thừa số của tích mang dấu âm , thừa số còn lại mang dấu dương , hoặc cả thừa số mang dâu dương
Nếu 2 trong 3 thừa số mang dấu âm , ko mất tính tổng quát ta giả sử
\(y+z-x< 0\left(and\right)z+x-y< 0\)khi đó \(2z< 0\Rightarrow z< 0\)
ko xảy ra zì z là độ dài đoạn thẳng nên z>0
Zậy phải có
\(y+z-x>0;z+x-y>0\left(and\right)x+y-z>0\)
suy ra
y+z>x ; z+x>y zà ?+y>z
ba số dương x,y ,z thỏa mãn bất đẳng thức nên là số đo độ dài cạnh của 1 tam giác
đây là cách làm còn trình bày nếu bạn cần mình có thể làm cho cậu
Từ : \(\frac{x^2+y^2-z^2}{2xy}+\frac{y^2+z^2-x^2}{2yz}+\frac{x^2+z^2-y^2}{2xz}>1\)
=> (y+z−x)(x+z−y)(x+y−z)>0
=> 2 trong 3 thừa số mang dấu âm, còn lại mang dấu dương, hoặc cả 3 thừa số đều mang dấu dương
Gỉa sử y+z-x <0 và z+x-y< 0 => z < 0
=> Loại
=> Cả 3 thừa số đều mang dấu dương
\(\Rightarrow y+z>x;z+x>y;x+y>z\)
=>
x;y;zx;y;z là độ dài 3 cạnh ΔΔ ( vì thỏa mãn bđt Δ )
A= 4x2y2 - (x2 + y2 - z2 )2
= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)
=[ z2-(x-y)2].[ (x+y)2-z2 ]
=(z-x+y)(z+x-y)(x+y-z)(z+y+z)
x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0
áp dụng bất đẳng thức của tam giác
ta có:
z-x+y>0
z+x-y>0
x+y-z>0
x+y+z>0
=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0
=> A>0