K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Đặt t = 111...1 + 7

(n số 1)

=> a.b + 4 = (t + 2).(t - 2) + 4

= t2 - 4 + 4

= t2, là số chính phương (đpcm)

20 tháng 11 2016

thank you bn nha

9 tháng 8 2017

Ta có : b = 100...05 ( n-1 chữ số 0 ) = 999...9 ( n chữ số 9 ) + 6 = 9.111...1 ( n chữ số 1 ) + 6 = 9.a + 6

=>       a.b + 1 = a.( 9.a + 6 )

                       = 9.a2 + 6.a + 1

                       = 9.a2 + 3.a + 3.a + 1  

                       = 3.a.( 3.a + 1 ) + ( 3.a + 1 )  

                       = ( 3.a + 1 ) . ( 3.a + 1 )

                       = ( 3.a + 1 )( đpcm )

Vậy bài toán được chứng minh !

          C.ơn nx bn đã tk cho mk ♥                      

Theo đề bài ra ta có :

b = 100...05 ( n -1 chữ số 0 ) = 999...9 ( n chữ số 9) + 6 = 9 . 111...1 ( n chữ số 1 ) + 6 = 9 . a + 6

\(\Rightarrow\) a . b + 1 = a . ( 9 . a + 6 ) 

                        = 9 . a2 + 6 . a + 1 

                        = 9 . a2 + 3 . a + 3 . a + 1

                        = 3. a . ( 3 . a + 1 ) + ( 3 . a + 1 )

                        = ( 3 .  a + 1 ) . ( 3 . a + 1 )

                        = ( 3 . a + 1 )2

\(\Rightarrow\left(Đpcm\right)\)

10 tháng 10 2019

Ta có: \(A+4=111...15+4=111...19=B\) ( có n chữ số 1)

=> \(A.B+4=A\left(A+4\right)+4=A^2+4A+4=\left(A+2\right)^2\) là số chính phương 

10 tháng 11 2018

b) \(N=444.....44448888.....8889\) (n số 4 và n-1 số 8)

\(N=444.....44448888.....8888+1\)(n số 4 và n số 8)

\(N=444.....4444.10^n+8888.....8888+1\) (n số 4 và n số 8)

\(N=4\times11....11.10^n+8\times11....11+1\)

Đặt t= 111.....11111 (n số 1)

\(\Rightarrow10^n=9t+1\)

\(N=4t\left(9t+1\right)+8t+1\)

\(N=36t^2+4t+8t+1\)

\(N=36t^2+12t+1=\left(6t+1\right)^2\)

suy ra N là số chính phương

23 tháng 8 2021

\(ab+1=\underbrace{11....11}_{2018c/s1}.\underbrace{11....13}_{2017c/s1}+1\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+1).(\underbrace{11....10}_{2017c/s1}+3)+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+3+1\)

\(\Leftrightarrow ab+1=\underbrace{11....10^2}_{2017c/s1}+4.\underbrace{11....10}_{2017c/s1}+4\)

\(\Leftrightarrow ab+1=(\underbrace{11....10}_{2017c/s1}+2)^2\) là số chính phương

Vậy...

C áp dụng hằng đẳng thức : \(x^2+2xy+y^2=\left(x+y\right)^2\)