Tìm x \(\in\)Q:
(x+1).(x-2)<0
(x-2).(x-\(\frac{2}{3}\))>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}x+1>0\\x-2< 0\end{cases}\) hoặc \(\begin{cases}x+1< 0\\x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< -1\\x>2\end{cases}\) (loại)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\) hoặc \(\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\)
\(\Leftrightarrow x>2\) hoạc \(x< -\frac{2}{3}\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
a; đề ( x + 1)(x - 2) < 0 khi và chỉ khi :
(+) TH1 x + 1 < 0 và x - 2> 0
=> x < -1 và x > 2
=> 2 < x <-1 (loại)
(+) Th2 : x + 1 > 0 và x- 2< 0
=> x> -1 và x < 2
=>-1 < x < 2 ( Tm)
VẬy -1 < x < 2 thì ( x+1)(x- 2) < 0
a)(x-1).(x-2)>0
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)>0\\\left(x-2\right)>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)
Vậy x>2
b)(x-2)2.(x+1).(x-4)<0
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2< 0\\\left(x+1\right)< 0\\\left(x-4\right)< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 2\\x< -1\\x< 4\end{cases}}\)
Vậy x<(-1)
c)Từ đề bài, ta suy ra:
\(\left(x-9\right)< 0\Leftrightarrow x< 9\)
d)\(\frac{5}{x}< 1\Leftrightarrow x< 5\)
\(\left(x-1\right)\left(x-2\right)>0\)
TH1: \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\Rightarrow x>2\)
TH2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\Rightarrow x< 1\)