K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

 

xét tứ giác AMCA có:

IK = IM (gt)

IA =IC (gt)

Suy ra :Tứ giác AMCK là hình bình hành

Mặt khác thì góc M =90

Suy ra :tứ giác AMCH là hình chữ nhật (đpcm)

b) TA có; IM là đường trung bình của tam giác ABC

Suy ra; MI // AB ,MI= 1/2 AB

suy ra; M K= AB, MK // AB

Vậy AKMB là hình bình hành

c) em k bt

 

 

10 tháng 11 2016

mình ko biết

30 tháng 12 2016

a)Tam giác ABC cân tại A có AM là đường trung tuyến=> AM là đường cao => Góc AMC=90

Xét tứ giác AMCK có: AI=CI ( I là trung điểm AC); MI=IK(K đx M qua I)

=> Tứ giác AMCK là hình bình hành (d/h nhận biết hbh)

AMCK là hình bình hành có: góc AMC =90

=> AMCK là hình chữ nhật

b)AMCK là hình chữ nhật

=> AK=MC hay AK=BM; AK//MC hay AK//BM

Xét tứ giác AKMB có AK=BM;AK//BM

=> AKMB là hình bình hành

a: Xét ΔABC có 

M là trung điểm của BC

I là trung điểm của AC

Do đó: MI là đường trung bình

=>MI//AC và MI=AC/2

=>MI//AK và MI=AK

=>AKMI là hình bình hành

mà AK=AI

nên AKMI là hình thoi

b: Xét tứ giác AMCN có 

I là trung điểm của AC

I là trung điểm của MN

Do đó: AMCN là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCN là hình chữ nhật

Xét ΔABC có 

K là trung điểm của AB

I là trung điểm của AC

Do đó: KI là đường trung bình

=>KI//BC và KI=BC/2

hay KI//MC và KI=MC

=>MKIC là hình bình hành

c: Xét tứ giác ABMN có 

AN//BM

AN=BM

Do đó: ABMN là hình bình hành

Suy ra: Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của AM

nên E là trung điểm của BN

10 tháng 11 2021

image

29 tháng 10 2023

a: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM\(\perp\)BC

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: AMCK là hình chữ nhật

=>AK//CM và AK=CM

AK=CM

MB=MC

Do đó: AK=MB

AK//CM

\(B\in CM\)

Do đó: AK//MB
Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

c: Để AMCK là hình vuông thì CA là phân giác của góc MCK

=>\(\widehat{ACM}=\dfrac{1}{2}\cdot90^0=45^0\)

=>\(\widehat{ABC}=45^0\)

8 tháng 11 2017

Bạn vẽ được hình ko

8 tháng 11 2017

Tứ giác AMCK là hcn vì

AI=IC(I là trung điểm của AC)

IM=IK(K là điểm đối xứng vs M qua I)

=>Tứ giác AMCK là hình bình hành(DHNB số 5)

Xét tứ giác AMCK có góc M vuông

=> Hình bình hành AMCK là hcn

Tứ giác ACMB là hình bình hành vì

Ta có Bm ss AK (MC ss AK theo tính chắt hcn)

Xét tam giác ABC có BM=MC,AI=IC

=>IM là đường trung bình của tam giác ABC

=>IM ss Ab

Mà I nằm giữa M và K =>MK ss AB

=>ABMK là hình bình hành (DHNB số 1)

Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông

26 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

26 tháng 10 2018

Mong mọi người giúp với! Mình đang cần gấp! Thanhs nhiều!

a: Xét tứ giác AMCK có 

I là trung điểm của AC
I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: \(S_{ABC}=\dfrac{AM\cdot BC}{2}=3\cdot4=12\left(cm^2\right)\)