Cho B =3+33+35+...+31991
Chứng minh rằng B chia hết cho 13 và 41
Lẹ lên nha chiều mai mk phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
=> 13 chia hết cho n + 3
=> n + 3 thuộc Ư(13) = {1;-1;13;-13}
n + 3 | 1 | -1 | 13 | -13 |
n | -2 | -4 | 10 | -16 |
Vậy n thuộc {-2;-4;10;-16}
n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n thuộc {2;0;3;-1;5;-3}
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
theo đề bài ta có aba - cba =(100a + 10b + c) - (100c + 10b + c) =(100a - a) + (10b - 10b) + (100c - 100c) =99a + 99c =99.(a + c) chia hết cho 99 => abc - cba chia hết cho 99
1/ a) \(x^2-x-1⋮x-1\)
=>\(x.\left(x-1\right)-1⋮x-1\)
=>\(-1⋮x-1\)(vì x.(x-1)\(⋮\)x-1)
=>x-1\(\inƯ\left(-1\right)\)
Đến đay tự làm
b/c/d/e/ tương tự
ta co : -(a-b-c)+(-a+b-c)-(-a+b+c)=-a+b+c+(-a)+b+(-c)+a-b-c
=(-a+a)+(b-b)+(c-c)-a+b+(-c)
=-a+b+(-c)
=-(a-b+c)
\(\Rightarrow dpcm\)
Theo đề bài ta có : A chia hết cho 3 và B chia hết cho 6
Để chia hết cho 6 thì số đó phải chia hết cho 2 và 3 ( vì 2 x 3 = 6 )
Suy ra : A là tập hợp con của B ( đpcm )
\(B=3\left(1+3^2+3^4\right)+...+3^{1987}\left(1+3^2+3^4\right)\)
\(=91\cdot\left(3+...+3^{1987}\right)⋮91\)
\(B=3\left(1+3^2+3^4+3^6\right)+...+3^{1985}\left(1+3^2+3^4+3^6\right)\)
\(=820\cdot\left(3+...+3^{1985}\right)⋮41\)