K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Xét ΔMQN có

A là trung điểm của MN

D là trung điểm của MQ

Do đó: AD là đường trung bình

=>AD//NQ và AD=NQ/2(1)

Xét ΔNPQ có 

B là trung điểm của NP

C là trung điểm của QP

Do đó: BC là đường trung bình

=>BC//NQ và BC=NQ/2(2)

Từ (1) và (2) suy ra AD//BC và AD=BC

hay ABCD là hình bình hành

26 tháng 12 2020

a) Xét ΔAMF có 

AE là đường cao ứng với cạnh MF(\(AE\perp MF\))

AE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔAMF cân tại A(Định lí tam giác cân)

hay AM=AF(1)

Xét ΔCFM có 

CE là đường cao ứng với cạnh MF(\(CE\perp MF\))

CE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔCFM cân tại C(Định lí tam giác cân)

hay CM=CF(2)

Vì ΔABC vuông tại A(gt) có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CM=BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=CM=BM(3)

Từ (1), (2) và (3) suy ra AM=AF=CF=CM=BM

Xét tứ giác AMCF có AM=CM=CF=FA(cmt)

nên AMCF là hình thoi(Dấu hiệu nhận biết hình thoi)

b)

Sửa đề: Tìm điều kiện của ΔABC để tứ giác AMCF là hình vuông

Hình thoi AMCF trở thành hình vuông khi  \(\widehat{AMC}=90^0\)

hay \(AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(\(AM\perp BC\))

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

hay AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì AMCF trở thành hình vuông

c)

Ta có: MD\(\perp\)AB(gt)

AC\(\perp\)AB(ΔABC vuông tại A)

Do đó: MD//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(cmt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

D là trung điểm của AB(cmt)

Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên \(MD=\dfrac{AC}{2}\)(Định lí 2 đường trung bình của tam giác)(1)

Ta có: \(ME\perp AC\)(gt)

\(AB\perp AC\)(ΔABC vuông tại A)

Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

nên \(CE=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MD=CE

Xét tứ giác CMDE có 

MD//CE(MD//AC)

MD=CE(cmt)

Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo CD và EM cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của EM(gt)

nên I là trung điểm của CD(đpcm)

14 tháng 12 2017

Bạn xem lời giải ở đườn link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem lời giải ở đường link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem ở đây nhé:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath