Có bao nhiêu số tự nhiên lẻ có 3 chữ số, các chữ số khác nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
5.Trường hợp 1 chữ số tận cùng là 0:
có 1 cách chọn hàng đơn vị,9 cách chọn hàng trăm , 8 cách chọn hàng chục.Tổng là 9 nhân 8 nhân 1 = 72 số
trường hợp 2 chữ số tận cùng là 5:
1 cách chọn hàng đơn vị,8 cách chọn hàng trăm và 9 cách chọn hàng chục.tổng là 8 nhân 8 nhân 1 =64
có tất cả các số có 3 chữ số khác nhau chia hết cho 5 là
72+64=136
Đ/S:136 số
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
có 720 số tự nhiên có 6 chữ số được lập từ các số trên
Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là a b c d e f
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
chu so lon nhat la :987
chu so nho nhat :123
co tat ca cac so tu nhien do la :
(987-123):2=432