K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

đề bài có đúng ko bạn

 

7 tháng 11 2016

mình ghi đúng

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

6 tháng 9 2020

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)

a) \(C=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\)

\(C=\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(C=\frac{x+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}\)

\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x\sqrt{y}-y\sqrt{x}}\)

\(C=\frac{\left(x+y-\sqrt{xy}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}\)

\(C=\frac{x+y-\sqrt{xy}}{\sqrt{xy}}\)

b)Giả sử  \(C>1\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}>1\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}-\sqrt{xy}}{\sqrt{xy}}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{xy}}>0\)( luôn đúng với mọi \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\))

6 tháng 9 2020

Nhầm ĐKXĐ :\(\hept{\begin{cases}x>0\\y>0\\x\ne y\end{cases}}\)

25 tháng 10 2016

\(C=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+3}{9-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2}\right)\) ĐK \(x\ge0;x\ne9\)

\(C=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)}-\frac{1\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)}\right)\)

\(C=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\right)\)

\(C=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)

\(C=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) x \(\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(C=\frac{-6}{\sqrt{x}+3}\)

b: ta có \(C=\frac{-6}{\sqrt{x}+3}\)\(C=\frac{1}{2}\)

\(\frac{-6}{\sqrt{x}+3}=\frac{1}{2}\)

\(-12=\sqrt{x}+3\)

\(\sqrt{x}=-15\)(Loại)

=> x không có giá trị nào để C=\(\frac{1}{2}\)

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2

5 tháng 7 2018

ai h dung minh giai cho