Bài 1 :
So sánh A = \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+....+\(\frac{1}{3^{100}}\)và B= \(\frac{1}{2}\)
Bài 2 :
Chứng minh : \(\left(3^{n+2}-2^{n+1}+3^n-2^n\right)⋮10\) , n là số nguyên dương
[Ngoài lề : Các bạn có thể chỉ giúp mình phương pháp chung để giải những bài toán nâng cao về tỉ lệ thức hay dãy tỉ số bằng nhau không ?]
Bài 1:
Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{99}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}\)
Vì \(A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\)