K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7

Lời giải:

$x^2+x=y^2$
$\Leftrightarrow x(x+1)=y^2$

Vì $gcd(x,x+1)=1$ nên để $x(x+1)=y^2$ thì bản thân mỗi số $x,x+1$ là 1 scp.

Đặt $x=a^2, x+1=b^2$ với $a,b$ là stn.

$\Rightarrow (x+1)-x=b^2-a^2$
$\Leftrightarrow 1=b^2-a^2=(b-a)(b+a)$

Vì $b,a\in\mathbb{N}$ nên $b+a=b-a=1$

$\Rightarrow b=1, a=0\Rightarrow x=0$

$y^2=x^2+x=1\Rightarrow y=\pm 1$
Vậy $(x,y)=(0,\pm 1)$

25 tháng 6 2015

a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)

b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)

25 tháng 2 2020

giup minh voikhocroi

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22