Cho tam giác ABC cân tại A có AM là phân giác ( M thuộc BC) . Từ C vẽ 1 đường thẳng // AM cắt AB tại E. Chứng minh tam giác ACE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
a) Xét △ABM và △ACM, có:
+ AB = AC
+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)
+ AM cạnh chung
Vậy △ABM = △ACM (c-g-c)
b) Vì △ABM = △ACM
=> Góc AMB = góc AMC
Ta có: góc AMB + AMC = 1800
=> 1800 = 2AMB
AMB = \(\dfrac{180^0}{2}\) = 900
Vì AMB = AMC = 900
Suy ra: AM ⊥ BC
Vậy AM ⊥ BC
Câu c không biết làm nha bạn.
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC và AM là đường cao
Xét ΔEBC có
M là trung điểm của BC
MA//EC
Do đó: A là trung điểm của EB
Xét ΔEBC có
M là trung điểm của BC
A là trung điểm của EB
Do đó: MA là đường trung bình
=>MA//EC
hay EC⊥BC
=>ΔECB vuông tại C
mà CA là đường trung tuyến
nên CA=AE
hay ΔACE cân tại A