cho phương trình: (m-1)x^2-2x-m+1=0
a. chứng minh rằng với mọi m khác 1 pt luôn có hai nghiệm trái dấu
b. Với giá trị nào của m thì tổng bình phương hai nghiệm bằng 6?
c. Với giái trị nào của m thì một trong hai nghiệm của phương trình bằng -2? Khi đó hãy tính nghiệm còn lại
a: Ta có: \(\left(m-1\right)x^2-2x-m+1=0\)
a=m-1; b=-2; c=-m+1
\(ac=\left(m-1\right)\left(-m+1\right)=-\left(m-1\right)^2< 0\forall m\)
Do đó: Phương trình luôn có hai nghiệm trái dấu
b: \(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(\dfrac{2}{m-1}\right)^2-2\cdot\dfrac{-m+1}{m-1}=6\)
\(\Leftrightarrow\dfrac{4}{\left(m-1\right)^2}=4\)
\(\Leftrightarrow\left(m-1\right)^2=1\)
=>m-1=1 hoặc m-1=-1
=>m=2 hoặc m=0