Cho tam giác ABC có đường phân giác của góc B là BH .Từ A kẻ đường thẳng song song với BH cắt cạnh CB kéo dài tại I. Tia phân giác của góc ABI cắt tại J.CMR
BJ vuông góc với AI
GIÚP MÌNH ĐI MÌNH CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AIB = HBC (2 góc đồng vị, AI // BH)
mà ABH = HBC (BH là tia phân giác của ABC)
=> AIB = ABH
mà ABH = BAI (2 góc so le trong, AI // BH)
=> AIB = BAI
=> Tam giác BAI cân tại B
mà BJ là tia phân giác của ABI của tam giác BAI cân tại B
=> BJ là đường cao của tam giác BAI
=> BJ _I_ AI
a) Ta có AI // BH => ^AIB = ^HBC và ^BAI = ^ABH (so le trong).
Mà ^HBC = ^ABH (BH là tia phân giác ^ABC) => ^AIB = ^BAI.
b) Bạn xét hai tam giác ABJ và IBJ.
(Nếu chưa học tam giác bằng nhau thì chứng minh như sau:
Ta thấy BJ và BH là tia phân giác của hai góc kề bù nên ^JBH = 90 độ.
Do AI // BH nên ^BJI = ^JBH = 90 độ => BJ vuông góc với AI.)
Cũng có thể giải cách này bạn :
a) Vì AI // BH => cặp góc so le trong bằng nhau
hay \(\widehat{A1}\) = \(\widehat{B2}\)
mà \(B2\) = \(\widehat{B1}\) ( BH là tia phân giác)
Vì AI // BH => cặp góc đồng vị bằng nhau
hay \(\widehat{B1}\) = \(\widehat{I1}\)
=> \(\widehat{A1}\)= \(\widehat{I1}\)
b) Vì BH là tia phân giác của \(\widehat{ABC}\)
=> \(\widehat{B2}\) = \(\widehat{B1}\) = \(\frac{\widehat{ABC}}{2}\)
Vì BJ là tia phân giác của \(\widehat{ABI}\)
=> \(\widehat{B3}\) = \(\widehat{B4}\) = \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC}}{2}\) + \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC+}\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) \(\frac{180^0}{2}\) = \(90^0\) ( Vì \(\widehat{ABC}\) và \(\widehat{ABI}\) là 2 góc kề bù)
hay \(\widehat{HBJ}\) = \(90^0\)
Vậy BJ vuông góc BH
BH // AI ( gt)
BJ vg BH
=> BJ vg AI
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
VẼ HÌNH VÀ ÁP DỤNG KIẾN THỨC LỚP 7 í