K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

Mình đang cần gấp mong các bạn giúp mình nhé

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:
Ta có:

$(2x-y)+(2y-z)+(2z-x)=1+2+3$
$2x-y+2y-z+2z-x=6$

$x+y+z=6$

4 tháng 9 2021

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

3 tháng 8 2021

Lấy vế cộng vế ta được : 

\(2\left(x+y+z\right)-y-z-x=1+2+3\)

\(\Leftrightarrow2\left(x+y+z\right)-\left(x+y+z\right)=6\)

\(\Leftrightarrow x+y+z=6\)

3 tháng 8 2021

z = 6 nha

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

2 tháng 11 2023

bài 1 :

Ta có: 7x=4y ⇔ x/4=y/7

áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/4=y/7=(y-x)/(7-4)=100/3

⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3

bài 2 

ta có x/5 = y/6 ⇔ x/20=y/24

         y/8 = z/7 ⇔ y/24=z/21

⇒x/20=y/24=z/21

ADTCDTSBN(bài 1 có)

x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16

⇒x= 20 x 23/16 = 115/4

   y= 24x 23/16=138/2

   z=21x23/16=483/16

 

13 tháng 7 2019

1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)

\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)

\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)

\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)

\(\Leftrightarrow-zy+x^2=-x^2+yz\)

\(\Leftrightarrow-2x^2=-2zy\)

\(\Leftrightarrow x^2=yz\)(đpcm)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)