K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : $f(-2) = 4a-2b+c$

$f(3) = 9a + 3x + c$

$\to f(-2) + f(3) = 13a+b+2c= 0$

$\to f(-2) = -f(3)$

$\to f(-2).f(3) = -[f(3)]^2$ \(\le\) $ 0 $

Do đó phát biểu $A$ đúng.

13a+b+2c=0

=>b=-13a-2c

f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c

f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c

=>f(-2)*f(3)<=0

16 tháng 4 2018

Bạn ơi đề sai đấy đáng ra bắt c/m f(-2).f(3)\(\le0\)nha bạn 

ta có f(x)=ax2+bx+c

\(\hept{\begin{cases}f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\\f\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{cases}}\)

Xét tổng f(-2)+f(3)=(4a-2b+c)+(9a+3b+c)

                            =4a-2b+c+9a+3b+c

                             =13a+b+2c

Lại có 13a+b+2c=0 (giả thiết)

=> f(-2)+f(3)=0

=> f(-2)=-f(3)

=> f(-2).f(3)=f(-2).[-f(-2)]

=-[f(-2)2 ]

Do [f(-2)2 ] \(\ge0\)=> -[f(-2)2 ]\(\le0\)

=> f(-2).f(3)\(\le0\)(đpcm)

25 tháng 6 2017

Ta có:

f(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c

f(3) = a.32 + b.3 + c = 9a + 3b + c

Suy ra: f(-2) + f(3) = 13a + b + 2c. Do đó f(-2).f(3) < 0 (đpcm)

2 tháng 5 2021

Ta có : f(-2) = 4a - 2b + c

f(3) = 9a + 3b + c

Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)

=> f(-2) = - f(3)

=> [f(-2)]2  = -f(3).f(-2)

mà [f(-2)]2 \(\ge0\)

=> -f(3).f(-2) \(\ge0\)

=> f(-2).f(3) \(\le\)0