Cho biết chu vi của một tam giác bằng 120cm Độ dài các cạnh tỉ lệ với 8,15,17
a/ chứng minh rằng tam giác đó là tam giác vuông
b/ tính khoảng cách từ giao điểm ba đường phân giác đến mỗi cạnh
Giúp với, thanks nhiều!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :
\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)
gọi độ dài mỗi cạnh lần lượt là A, B, C
Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)
Độ dài mỗi cạnh là:
C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)
C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)
C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)
\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm
Tam giác ABC có chu vi bằng 74cm, AC là cạnh lớn nhất. Đường phân giác của góc A chia cạnh BC thành hai đoạn tỉ lệ với 2:3; đường phân giác của góc C chia cạnh AB thành hai đoạn tỉ lệ với 4:5. Tính độ dài các cạnh của tam giác ABC.
AB + BC + AC = 74 (*)
Trong ∆ ABC phân giác AD → AB/AC = DB/DC = 2/3 (AC > AB)
→ AB = 2/3 . AC (1) , tương tự với phân giác CE ta suy ra
BC = 4/5 . AC (2) . Thế tất cả vào (*) ta được:
2/3 . AC + 4/5 . AC + AC = 74 → 37AC/15 = 74 → AC = 30cm
thế vào (1) và (2) ta được AB = 10cm, BC = 24cm
Ta có:
\(\hept{\begin{cases}a+b+c=49,49\\20a-21b=0\\29a-21c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=14,14\\b=14,847\\c=20,503\end{cases}}\)
Giao điểm của ba đường phân giác chính là tâm của đường tròn nội tiếp.
Áp dụng công thức:
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=pr\left(p=\frac{a+b+c}{2}=\frac{49,49}{2}=24,745\right)\)
\(\Rightarrow r=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}\)\(=\frac{\sqrt{24,745\left(24,745-14,14\right)\left(24,745-14,847\right)\left(24,745-20,503\right)}}{24,745}=4,242\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{15}=\dfrac{c}{17}=\dfrac{a+b+c}{8+15+17}=\dfrac{120}{40}=3\)
Do đó: a=24; b=45; c=51
\(c^2=b^2+a^2\)
nên ΔABC vuông tại A