a) Tính GTLN của : \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
b) Cho tam giác cân có cạnh đáy là 24, cạnh bên là 20. Tính độ dài đường cao ứng với cạnh bên của tam giác trên
c) Cho tam giác ABC có AB = 48, AC = 14, BC = 50. Tính độ dài đường trung tuyến AM của tam giác
c: \(AM^2=\dfrac{2\cdot\left(AB^2+AC^2\right)-BC^2}{4}=\dfrac{2\cdot\left(48^2+14^2\right)-50^2}{4}=625\)
nên AM=25(cm)
a: Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
nên AH=16(cm)
Xét ΔAHC vuông tại H và ΔBKC vuông tại K có
\(\widehat{C}\) chung
Do đó: ΔAHC\(\sim\)ΔBKC
Suy ra: \(\dfrac{AH}{BK}=\dfrac{HC}{KC}=\dfrac{AC}{BC}\)
=>16/BK=20/24=5/6
=>BK=19,2(cm)