OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 9 số nguyên bất kì. Chứng tỏ rằng ta có thể chọn 5 số trong 9 số đó sao cho tổng của chúng chia hết cho 5
Mình đang cần gấp, giúp nhanh nha
Cho 9 số nguyên bất kì. Chứng tỏ rằng có thể chọn ra 5 số nguyên bất kì trong 9 số đó sao cho tổng của chúng chia hết cho 5
bài này hả
bài này ở đâu vậy
Cho 9 số nguyên bất kì. Chứng tỏ rằng ta luôn chọn được 5 số sao cho tổng của chúng chia hết cho 5
vào cpvm mà hỏi thầy
Cho 9 số nguyên bất kì. Chứng minh rằng ta luôn luôn chọn đc 5 số từ 9 số đó sao cho tổng 5 số được chọn chia hết cho 5
bạn lên mạng coi có nhiều bài tương tự á
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Bài 163 (33-SNC). Cho 5 số tự nhiên lẻ bất kì, chứng tỏ rằng ta luôn chọn được bốn số có tổng chia hết cho 4 . Bài 164 (33-SNC). Viết 6 số tự nhiên vào 6 mặt của một con xúc xắc. Chứng tỏ rằng khi ta gieo xúc xắc xuống mặt bàn thì trong 5 mặt có thể nhìn thấy bao giờ cũng tìm được một hay nhiều mặt để tổng các số trên mặt đó chia hết cho 5 . Bài A. Cho 2021 số tự nhiên bất kì, chứng tỏ rằng trong đó tồn tại 1 số chia hết cho 2021 hoặc tồn tại 1 vài số có tổng chia hết cho 2021. Bài B. Cho một hình vuông cạnh bằng 5 và chia thành 25 hình vuông kích thước 1 x 1. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau. Bài C. Biết 997 là số nguyên tố lớn nhất , nhỏ hơn 1000. Chứng minh rằng tồn tại số tự nhiên có dạng 111...1 chia hết cho 997.
Đinh Hoàng Anh lớp 6CT Lương Thế Vinh Hà Nội cơ sở A đúng kg =)))
cho 100 số tự nhiên bất kì . chứng minh rằng ta có thể chọn ra 15 số sao cho 2 số bất kì trong 15 số đó có hiệu chia hết cho 7 ?
Cho 5 số tự nhiên bất kì. Chứng minh rằng trong 5 số ấy ta có thể chọn ra 2 số mà hiệu các bình phương của chúng chia hết cho 7