Tìm các cặp số (x;y) sao cho:
\(\frac{x-1}{5}=\frac{3}{y+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{15y+3}{9x+12}=\frac{3\left(5y+1\right)}{3\left(3x+4\right)}=\frac{5y+1}{3x+4}\)
......
- Nếu y = 0, khi đó ta có:
\(\frac{1}{12}=\frac{1}{5x}=\frac{1}{4x}\) (vô lý).
- Nếu \(y\ne0\), khi đó ta có:
\(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Leftrightarrow\frac{y+5y^2}{5xy}=\frac{y+7y^2}{4xy}\)
\(\Leftrightarrow\frac{y+5y^2}{5}=\frac{y+7y^2}{4}\) (do \(xy\ne0\)).
\(\Leftrightarrow4\left(y+5y^2\right)=5\left(y+7y^2\right)\)
\(\Leftrightarrow4y+20y^2=5y+35y^2\)
\(\Leftrightarrow15y^2+y=0\)
\(\Leftrightarrow y\left(15y+1\right)=0\)
\(\Leftrightarrow15y+1=0\) ( do y khác 0).
\(\Leftrightarrow y=-\frac{1}{15}\).
Từ đó ta có:
\(\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}=\frac{1+7.\frac{-1}{15}}{4x}\)
suy ra \(\frac{1}{15}=\frac{\frac{2}{3}}{5x}\)\(\Leftrightarrow5x=15.\frac{2}{3}=10\).\(\Leftrightarrow x=2\).
vậy \(x=2,y=-\frac{1}{15}\).
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
So sánh \(\frac{2005}{2004}và\frac{14}{13}\)
Ta có: \(\frac{2005}{2004}-1=\frac{1}{2004}\)
\(\frac{14}{13}-1=\frac{1}{13}\)
Vì \(\frac{1}{2004}< \frac{1}{13}\Rightarrow\frac{2005}{2004}< \frac{14}{13}\)
So sánh \(\frac{A}{X-1}và\frac{A}{X+1}\)
Vì X - 1 < X + 1 mà hai phân số có cùng tử số
\(\Rightarrow\frac{A}{X-1}>\frac{A}{X+1}\)
Từ \(\frac{x-1}{5}=\frac{3}{y-4}\Rightarrow\left(x-1\right)\left(y-4\right)=15=1.15=3.5=-1.\left(-15\right)=-5.\left(-3\right)\)
Lập bảng xét từng TH ta tìm được x,y
bạn ghi sát trong mình kho thấy