Cho \(x,y,z\ge0.\)Chứng minh:
\(x^2+y^2+z^2\le\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qui đồng lên ta có: (cần chứng minh)
\(2\sum\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)
\(\Leftrightarrow2\sum\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\le7\left(x^2y^2z^2+\sum x^2+\sum x^2y^2+1\right)\)
\(\Leftrightarrow2\sum x^4+2\sum x^4z^2\le7x^2y^2z^2+3\sum x^2z^2+\sum x^2+1\)
Hay \(\left(\sum x^2+x+y+z-2\sum x^4\right)+7x^2y^2z^2+3\sum x^2z^2-2\sum x^4z^2\ge0\)
hay \(\sum x^2\left(1-x^2\right)+\sum x\left(1-x^3\right)+7x^2y^2z^2+\sum x^2z^2+2\sum x^2z^2\left(1-x^2\right)\ge0\)
(luôn đúng do x, y, z\(\in\left[0;1\right]\))
Vậy ta có đpcm. Dấu = xảy ra khi 2 số bằng 0, 1 số bằng 1.
\(VT=x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)}{y^2+1}-\frac{z^2\left(y^2+1\right)}{z^2+1}-\frac{x^2\left(z^2+1\right)}{x^2+1}\)
\(\le x^2+y^2+z^2+3-\frac{y^2\left(x^2+1\right)+z^2\left(y^2+1\right)+x^2\left(z^2+1\right)}{2}\)
\(\le\frac{x^2+y^2+z^2}{2}+3-\frac{x^2y^2+y^2z^2+z^2x^2}{2}\)
\(\le\frac{x^2+y^2+z^2}{2}+3\)
Mặt khác ta có: \(x^2+y^2+z^2=1-2\left(xy+yz+zx\right)\le1\)
\(\Rightarrow VT\le\frac{7}{2}\).Dấu "=" xảy ra tại \(\left(0;0;1\right)\) và các hoán vị của nó
Với \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\), ta cần chứng minh: \(\frac{x^2+1}{y^2+1}+\frac{y^2+1}{z^2+1}+\frac{z^2+1}{x^2+1}\le\frac{7}{2}\)
\(\Leftrightarrow2\Sigma_{cyc}\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\) \(\Leftrightarrow2\Sigma_{cyc}\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\)\(\le7\left(x^2y^2z^2+x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+1\right)\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+2\left(x^4z^2+y^4x^2+z^4y^2\right)\)\(\le7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)+x^2+y^2+z^2+1\)
\(\Leftrightarrow\left[x^2+y^2+z^2+x+y+z-2\left(x^4+y^4+z^4\right)\right]\)\(+7x^2y^2z^2+3\left(x^2y^2+y^2z^2+z^2x^2\right)-2\left(x^4z^2+y^4x^2+z^4y^2\right)\ge0\)
\(\Leftrightarrow\text{}\Sigma_{cyc}x^2\left(1-x^2\right)+\Sigma_{cyc}x\left(1-x^3\right)+7x^2y^2z^2\)\(+\left(x^2z^2+y^2x^2+z^2y^2\right)+2\Sigma x^2z^2\left(1-x^2\right)\ge0\)
(Đúng do \(x,y,z\in\left[0;1\right]\))
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1;0;0\right)\)và các hoán vị
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)
\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)
Thiết lập tương tự và thu lại ta có
\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)
\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )
\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )
\(\Rightarrow\) đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
thử x=1,y=2,z=3\(=>x^2+y^2+z^2=14>\dfrac{1}{2}\)(vô lí) sai đề
bổ sung \(x+y+z=1\)