Cho A = \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{103.107}\). So sánh A với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\) \(4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{111}\right)\)
\(A=4.\frac{12}{37}\)
\(A=\frac{48}{37}\)
Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)
=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
k nha bạn
\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )
4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))
4(\(\frac{1}{3}-\frac{1}{111}\))
4.\(\frac{12}{37}\)
48/37
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(\Rightarrow=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{12}{37}\)
k nha
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{108}{333}=\frac{12}{37}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
Vậy giá trị của biểu thức \(B=\frac{32}{99}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{103.107}\)
=\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{103.107}\)
=\(\frac{1}{3.107}\)
=\(\frac{1}{321}\)
k mk nha bn
=