K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

TXĐ:R

\(\forall x\in R\Rightarrow\begin{cases}-x\in R\\f\left(-x\right)=3sin\left(-x\right)-2=-3sinx-2\end{cases}\)

Gỉa sử:x=\(\frac{\pi}{2}\Rightarrow\)\(f\left(\frac{\pi}{2}\right)=1\)\(\ne f\left(-\frac{\pi}{2}\right)=-5\)\(\ne-f\left(\frac{\pi}{2}\right)\)=-1

Vậy hàm số không có tính chẵn-lẻ

 

 

17 tháng 6 2021

Đặt `y=f(x)=x-sinx`

Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`

`=>` Hàm lẻ.

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

a. TXĐ: $D=\mathbb{R}$

Xét $x=3\in D$ thì $-3\in D$

$y(-3)=3^2\sin (-3+3)=0; -y(-3)=0$ 

$y(3)=3^2\sin 6\neq 0$

Do đó: $y(3)\neq y(-3)$ và $y(3)\neq -y(-3)$ nên hàm không chẵn cũng không lẻ.

b. ĐKXĐ: $D=\mathbb{R}$

Với $x\in D$ thì $-x\in D$

$y(-x)=\sqrt{2-\sin ^2(-3x)}=\sqrt{2-(-\sin 3x)^2}$

$=\sqrt{2-(\sin 3x)^2}=y(x)$

Do đó hàm là hàm chẵn. 

Cho hàm số \(y = \sin x\).a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.     \(x\)            \( - \pi \)            \( - \frac{{3\pi }}{4}\)            \(...
Đọc tiếp

Cho hàm số \(y = \sin x\).

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\sin x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \sin x\) như hình dưới đây.

Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \sin x\)

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) =  - \sin x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \sin x\) là hàm số lẻ.

b)

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

    \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

            \(\sin x\)

            \(0\)

    \( - \frac{{\sqrt 2 }}{2}\)

            \( - 1\)

    \( - \frac{{\sqrt 2 }}{2}\)

0

\(\frac{{\sqrt 2 }}{2}\)

1

\(\frac{{\sqrt 2 }}{2}\)

0

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \sin x\) có tập xác định là \(\mathbb{R}\), tập giá trị là [-1;1] và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right),\;k\; \in \;\mathbb{Z}.\)

NV
17 tháng 12 2020

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)

\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa

\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\) \

 Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) =  - \sin 2x - \tan 2x =  - \left( {\sin 2x + \tan 2x} \right) =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ

b) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)

Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

c) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) =  - \sin x.\cos 2x =  - f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ

d) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \sin \left( { - x} \right).\cos \left( { - x} \right) =  - \sin x.\cos x\\f\left( x \right) = \sin x.\cos x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

Hàm số \(y = \sin x\cos x\) là hàm số lẻ

b)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \tan \left( { - x} \right) + \cot \left( { - x} \right) =  - \tan x - \cot x\\f\left( x \right) = \tan x + \cot x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

Hàm số \(y = \tan x + \cot x\) là hàm số lẻ

c)     Ta có:

 \(\left. \begin{array}{l}f\left( { - x} \right) = {\sin ^2}\left( { - x} \right) = {\left( { - \sin \left( x \right)} \right)^2} = {\sin ^2}x\\f\left( x \right) = {\sin ^2}x\end{array} \right\} \Rightarrow f\left( { - x} \right) = f\left( x \right)\)

Hàm số \(y = {\sin ^2}x\) là hàm số chẵn

15 tháng 1 2017

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.