K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}\)

\(=\dfrac{x+3\sqrt{x}+2}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+1}{1}=\left(\sqrt{x}+1\right)^2\)

b: Để 1/A là số tự nhiên thì \(\sqrt{x}+1\) là số tự nhiên

hay \(x=k^2\left(k\in N;k\ne1\right)\)

20 tháng 9 2018

Ai trả lời nhanh và chính xác mình k

⋯MUA THẺ HỌC
26 tháng 3 2019

\(P=\dfrac{x\sqrt{x}-x-\sqrt{x}-2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)^2}{2}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)\left(x-1\right)}{2}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)\left(1-x^2\right)}{2\left(x+\sqrt{x}+1\right)}\)

26 tháng 5 2019

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\sqrt{x}+2}\right].\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}+\sqrt{x}+4\right]\) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(=\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}+2}.\left(x+5\right)\)

\(=\frac{x+5}{\sqrt{x}+2}\)

\(=\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{x-2\sqrt{x}+1}{\sqrt{x}+2}\)

\(=2+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+2}\ge2\)

Dấu '=' xảy ra khi \(x=1\)

Vậy \(A_{min}=2\) khi \(x=1\)

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

12 tháng 8 2019

a) đk : \(x\ge0\) ; \(x\ne1\)

A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)

b) đk : \(x\ne0;x\ne1\)

B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)

nhân đa với đa đấy bạn

1: Ta có: \(Q=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\left(\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}-\frac{x\sqrt{x}-1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\frac{x-2\sqrt{x}+x\sqrt{x}-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\frac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\frac{x-1}{x+\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}\cdot\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

2: Ta có: \(\frac{1}{Q}=4\sqrt{x}-4\)

\(\Leftrightarrow Q=\frac{1}{4\sqrt{x}-4}\)

\(\Leftrightarrow\frac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{4\sqrt{x}-4}\)

\(\Leftrightarrow\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(4\sqrt{x}-4\right)\)

\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1=4x\sqrt{x}-4\)

\(\Leftrightarrow x+x\sqrt{x}-\sqrt{x}-1-4x\sqrt{x}+4=0\)

\(\Leftrightarrow x-3x\sqrt{x}-\sqrt{x}+3=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(x\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left[\sqrt{x}-3\left(x+\sqrt{x}+1\right)\right]=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-3x-3\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(-3x-2\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)=0\)(vì \(-3x-2\sqrt{x}-3\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\sqrt{x}=1\)

hay x=1(không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x thỏa mãn \(\frac{1}{Q}=4\sqrt{x}-4\)

16 tháng 5 2021

a, Với \(x\ge0;x\ne1\)

\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

16 tháng 5 2021

Bạn ghi chuẩn đề chưa vậy

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

AH
Akai Haruma
Giáo viên
2 tháng 6 2020

Lời giải:

a)

\(A=\frac{\sqrt{3}-1+\sqrt{3}+1}{(\sqrt{3}+1)(\sqrt{3}-1)}+2-\sqrt{3}=\frac{2\sqrt{3}}{3-1}+2-\sqrt{3}=\sqrt{3}+2-\sqrt{3}=2\)

b)

\(B=\left(\frac{1}{\sqrt{x}(\sqrt{x}-1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}\right):\frac{\sqrt{x}}{(\sqrt{x}-1)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}.(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)^2}{\sqrt{x}}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{x}=\frac{x-1}{x}\)