cho x^2+y^2+z^2 lớn hơn hoặc bằng 3 chứng minh x+y+z+xy+yz+xz bé hơn hoặc bằng 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)
=> dpcm
Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)
\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)
\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)
Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)
\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)
\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Áp dụng BĐT Cauchy cho 3 số:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)
\(\Rightarrow9+x^2+y^2+z^2\ge12\)
hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)
Sử dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\right)=3\left(x^2+y^2+z^2\right)=3\)
\(\Rightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge\sqrt{3}\)
a/ a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)
=> ĐPCM
b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc
<=> a2 + b2 + c2 + 2( - ab + ac - bc)\(\ge\) 0
<=> (a - b + c)2 \(\ge0\)(đúng)
=> ĐPCM
\(x^2+y^2+z^2\ge xy+yz+xz\)\(\left(1\right)\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\)\(\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(luôn đúng )
\(\Rightarrow\)Phương trình ( 1) đúng ( đpcm)
Dấu bằng sảy ra \(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)
@Phạm Thị Thùy Linh hoặc có thể dùng bđt Cauchy cũng được, sau này lên lớp 9 sẽ áp dụng nhiều
Bài làm :
Áp dụng bđt Cauchy ta có :
\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{cases}}\)
Cộng vế của các bất đẳng thức ta được :
\(x^2+y^2+y^2+z^2+x^2+z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.
Đặt \(m=x+y+z\) thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)
\(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)
\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1)
Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)
Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)