K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Xét : \(\Delta AHB,\Delta CAB\) có:

\(\widehat{H}=\widehat{A}=90^o\)

=> C là góc chung.

=> AHB đồng dạng CAB (g.g)

\(\Rightarrow\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.HC\Leftrightarrow AB=\sqrt{175.112}=140\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)

Vì AD là tia phân giác trong tam giác ABC.

\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}\)

Theo tính chất của dãy số bằng nhau ta có:

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)

\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5AB}{7}=\frac{5.140}{7}=100\)

HD = HB - BD = 112 - 100 = 12 

\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)

5 tháng 8 2018

\(\dfrac{AB}{BC}\) = \(\dfrac{HB}{AB}\) \(\Rightarrow\) AB2 = HB. BC \(\Rightarrow\) AB = \(\sqrt{63.175}\)

= 105

Bạn làm nhầm phần này rồi ><

10c - 11b / 9 =11a-9c/10=9b-10a/11 .chứng minh a/9=b/10=c/11

16 tháng 10 2015

xét tam giác AHB và tam giác CAB có 

H = A = 90 

C chung 

=> AHB đồng dạng CAB ( g.g )

=>\(\frac{AB}{BC}=\frac{HB}{AB}\Leftrightarrow AB^2=HB.BC\Leftrightarrow AB=\sqrt{175.112}=140\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{140^2-112^2}=84\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{175^2-140^2}=105\)

VÌ AD là tia phân giác trogn tam giác ABC 

\(\frac{BD}{AB}=\frac{DC}{AC}\)

THEO T/C DÃY TĨ SỐ = NHAU

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{175}{140+105}=\frac{5}{7}\)

\(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{5.AB}{7}=\frac{5.140}{7}=100\)

HD = HB - BD = 112 -100 = 12 

\(AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+84^2}=85\)

3 tháng 8 2016

AD= 60\(\sqrt{2}\)

15 tháng 10 2021

Ta có \(BC=BD+CD=35\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)

Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

DB/DC=AB/DC

DB+DC=BC

=>DB=5-20=-15 là sai đề rồi bạn

BC>DC là sai đề rồi bạn

4 tháng 4 2021

tự vẽ hình 

ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)

Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)

=> <HBA=<HAC 

Xét tam giác BAH và ACH

<BHA=<AHC\(\left(90^0\right)\)

<ABH=<HAC

=> Tam giác BAH đồng dạng với tam giác ACH

=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm 

b, ta có BC=BH+CH=4+9=13 cm 

S(ABC) = AH*BC=36*13=468 cm\(^2\)

 

4 tháng 4 2021

cảm ơn bạn