K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016
  • Ta có : \(-2\left(x-1\right)^2\le0\Rightarrow A=15-2\left(x-1\right)^2\le15\)

Vậy Max A = 15 <=> x = 1

  • \(-\left(x^2-4\right)^2\le0\Rightarrow B=-2015-\left(x^2-4\right)^2\le-2015\)

Vậy Max B = -2015 <=> x = \(\pm2\)

19 tháng 8 2016

\(A=15-2\left(x-1\right)^2\)

Vì \(-2\left(x-1\right)^2\le0\)

\(\Rightarrow15-2\left(x-1\right)^2\le15\)

Khi \(x-1=0\)

      \(x=1\)

Vậy \(GTLN\) của A là 15 khi x = 1

\(B=-2015-\left(x^2-4\right)^2\)

Vì : \(-\left(x^2-4\right)^2\le0\)

\(\Rightarrow-2015-\left(x^2-4\right)^2\le-2015\)

Vậy GTLN của B là -2015 khi x = 2 ; x = -2

14 tháng 10 2021

\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)

14 tháng 10 2021

Bài 2:

a) \(=x^2-4-x^2-2x-1=-2x-5\)

b) \(=8x^3-1-8x^3-1=-2\)

Bài 3:

a) \(\Rightarrow x^3+8-x^3+2x=15\)

\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)

b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)

\(\Rightarrow7x=14\Rightarrow x=2\)

12 tháng 8 2016

\(A=15-2\left(x-1\right)^2\)

Vì \(-2\left(x-1\right)^2\le0\)

=> \(15-2\left(x-1\right)^2\le15\)

Vậy GTLN của A là 15 khi x=1

\(B=-2015-\left(x^2-4\right)^2\)

Vì: \(-\left(x^2-4\right)^2\le0\)

=>\(-2015-\left(x^2-4\right)^2\le-2015\)

Vậy GTLN của B là -2015 khi x=2;x=-2

\(C=-\left(x^2+5\right)^2-\frac{1}{2}\)

Vì \(-\left(x^2+5\right)^2\le0\)

=> \(-\left(x^2+5\right)^2-\frac{1}{2}\le-\frac{1}{2}\)

Vậy GTLN của C là \(-\frac{1}{2}\) 

12 tháng 8 2016

do la gtbn ma

28 tháng 10 2021

Bài 8:

\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)

28 tháng 10 2021

Bài 9:

\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)

13 tháng 10 2021

\(A=\dfrac{1}{x^2+2}\)

Ta có \(x^2+2\ge2\Leftrightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)

Vậy \(A_{max}=\dfrac{1}{2}\Leftrightarrow x=0\)

\(B=-\left|x+2015\right|+4\le4\\ B_{max}=4\Leftrightarrow x+2015=0\Leftrightarrow x=-2015\)

13 tháng 10 2021

J siêng dzậy :)

a)

Ta có:

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)

\(\ge0-2=-2\)

Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

b)\(B=4x^2+4x+8=4x^2+4x+1+7\)

\(=\left(2x+1\right)^2+7\ge0+7=7\)

Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

c)

Ta có:

\(C=3x-x^2+2=2-\left(x^2-3x\right)\)

\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)

\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)

Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

d) Ta có:

\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)

\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)

Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)

e) Ta có:

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

\(\ge0+0+2=2\)

Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

17 tháng 12 2022

\(-x^2-5x+5\\ =-\left(x^2+5x-5\right)\\ =-\left(x^2+5x+\dfrac{25}{4}-\dfrac{45}{4}\right)\\ -\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\)

có \(\left(x+\dfrac{5}{2}\right)^2\ge0\\ =>-\left(x+\dfrac{5}{2}\right)^2\le0\\ =>-\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\le\dfrac{45}{4}\)

dấu "=" xảy ra khi \(\left(x+\dfrac{5}{2}\right)^2=0< =>x=-\dfrac{5}{2}\)

vậy GTLN của biểu thức A là 45/4 khi x=-5/2

22 tháng 10 2021

a,A =  x- x + 5 ,khi x = 2

= 22 - 2 + 5

= 7.

 

22 tháng 10 2021

a: Thay x=2 vào A, ta được:

\(A=2^2-2+5=4+5-2=7\)