Cho biểu thức : P=\(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Tìm giá trị của P biết rằng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dữ kiện của đề bài cho.
ta cộng lần lượt các vế của đẳng thức với 1
sau đó quy đồng ta sẽ dễ dàng nhìn thấy x=y=z=t
suy ra P=4
ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}.\)
=> 3x = y+z + t ( 1) ; 3y = z+ t + x (2) ; 3z = t + x + y (3) ; 3t = x + y + z (4)
từ (3) và (4) => x + y = 3t - z = 3 z - t => 4t = 4z => t = z (5)
từ ( 1) và ( 2) => t + z = 3x - y = 3y - x => x = y ( 6)
từ (2) và (3) => x + t = 3y - z = 3z - y => y = z (7)
từ ( 5) ; ( 6) và (7) ta có : x = y = z = t thay vào biểu thức P ta được : P = 4
Cộng 1 vào mỗi đẳng thức,ta có:
\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Do đó:
Nếu x + y + z + t = 0 thì P = -4
Nếu x + y + z + t ≠ 0 thì x = y = z = t nên P = 4
Giải thích thêm chỗ x + y + z + t = 0 suy ra \(P=-4\) nha:
Ta có: x + y + z + t =0
Suy ra: x + y = -(z+t) ;y + z = -(x+t)
z+ t = -(x + y); t + x = -(z+y)
Do đó: \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
\(=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{t+x}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
*còn chỗ x + y + z + t khác không suy ra x = y = z = t thì quá đơn giản r =))
TH1 : \(x+y+z+t=0\)
=> \(x+y=-\left(z+t\right)\)
\(y+z=-\left(x+t\right)\)
\(z+t=-\left(x+y\right)\)
\(x+t=-\left(y+z\right)\)
\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-4\)
TH2 : \(x+y+z+t\ne0\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=3\)( do \(x+y+z+t\ne0\))
\(\Rightarrow x=3\left(y+z+t\right)\)
\(y=3\left(z+t+x\right)\)
\(z=3\left(t+x+y\right)\)
\(t=3\left(x+y+z\right)\)
\(\Rightarrow\)\(4x=3\left(x+y+z+t\right)\)
\(4y=3\left(x+y+z+t\right)\)
\(4z=3\left(x+y+z+t\right)\)
\(4t=3\left(x+y+z+t\right)\)
\(\Rightarrow\)\(4x=4y=4z=4t\)
\(\Rightarrow\)\(x=y=z=t\)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)\(=1+1+1+1\)\(=4\)
Vậy trong cả 2 trường hợp P đều có giá trị nguyên
Bài trên đúng rồi đó các bạn cho bn ý
Mà đây là Toán 7 thì đúng hơn
Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)
=> Biểu thức = -1-1-1-1 = -4
Nếu x+y+z+t khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3
=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)
=> x=y=z=t
=> A = 1+1+1+1 = 1
Vậy ...........
k mk nha
cộng 1 vào ĐK thì tử là x+y+z+t => mẫu = nhau
=> x=y=z=t => P=4
Áp dụng dãy tỉ số bằng nhau ta có:
x/(y+z+t) = y/(x+z+t)=z/(x+y+t)=t/(y+z+x)= (x+y+z+t)/3(x+y+z+t)=1/3
=> 3x = y+z+t
3y= x+z+t
3z= x+y+t
3t= x+y+z
Cộng các đẳng thức trên vế theo vế ta suy ra:
x+y+z+t = 0
=> x+ y=-(z+t) ; y+z=-(x+t); z+t=-(x+y); t+x=-(z+y)
Thế vào P ta được: P = -(z+t)/(z+t) -(t+x)/(t+x) - (x+y)/(x+y) - (z+y)/(z+y) = -4
Áp dụng t/c dãy tỉ số bằng nhau :\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(\Rightarrow\begin{cases}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{cases}\) => x = y = z = t
Thay vào P được : \(P=1+1+1+1=4\)
Sao thủy
Sao kim
Trái đất
Sao hỏa
Sao mộc
Sao thổ
Sao thiên vương
Sao hải vương