So sánh:
A = 2019+1 / 2020+1 và B = 2020+1 / 2021+1
Bạn nào giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)
Ta xét 2 trường hợp:
\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)
\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)
\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)
\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)
\(Do:\)
\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)
\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
\(\Rightarrow A>B\)
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
ta có :\(E=\frac{2019^{2019}+1}{2019^{2020}+1}\Leftrightarrow2019\cdot E=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2019}{2019^{2020}+1}\)
\(F=\frac{2019^{2020}+1}{2019^{2021}+1}\Leftrightarrow2019\cdot F=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
vì \(\frac{2019}{2019^{2020}+1}>\frac{2019}{2019^{2021}+1}\) nên E>F
E=2019 x 2019 x 2019 x ........ x 2019 x2019 +1 /2019 x 2019 x 2019 x.........x 2019 x 2019 + 1
E=1+1/2019+1
E=2/2020
E=1/1010
F=2019 x 2019 x 2019 x .......... x 2019 x 2019 +1 / 2019 x 2019 x 2019 x ....... x 2019 x 2019 +1
F= 1+1/2019+1
F=2/2020
F=1/1010
từ đó ta có E=F(=1/1010)
ta có: M=10^2020 +1 / 10^2019 +1
=> M/10= 10^2020 +1 / 10( 10^2019 +1 )
= 10^2020+1/ 10^2020 +10
=> 10/A= 10^2020 +10/10^2020 +1
=(10^2020 +1) +9/ 10^2020+1
=10^2020+1 /10^2020+1 + 9/10^2020+1
=1+ 9/10^2020+1
ta lại có: N=10^2021 +1/10^2020 +1
=> N/10= 10^2021+1/ 10(10^2020+1)
= 10^2021+1 / 10^2021+10
=> 10/N=10^2021+10 / 10^2021+1
=(10^2021+1) +9/10^2021+1
=10^2021+1/10^2021+1 +9/10^2021+1
=1+ 9/10^2021+1
ta thấy: 10/M>10N
=>M<N
\(M=\dfrac{10^{2020}+1}{10^{2019}+1}=1-\dfrac{9}{10^{2019}+1}\)
\(N=\dfrac{10^{2021}+1}{10^{2020}+1}=1-\dfrac{9}{10^{2020}+1}\)
Ta có: \(10^{2019}+1< 10^{2020}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2019}+1}>\dfrac{9}{10^{2020}+1}\)
\(\Leftrightarrow-\dfrac{9}{10^{2019}+1}< -\dfrac{9}{10^{2020}+1}\)
\(\Leftrightarrow M< N\)
M = 2019 / 2020 + 2020 / 2021 + 2021/ 2019
= ( 1 - 1/2019 ) + ( 1 - 1/2020 ) + ( 1+ 2/2021 )
= 3 - 1/2019 - 1/2020 + 2/2021
A - 3 = - 1/2019 - 1/2020 + 2/2021 > 0
Vậy M > 3
Ko bít có làm đúng ko nx nhưng bn cứ tham khảo bài mk nhé !
Ta có:
\(20A=\frac{20\left(20^{19}+1\right)}{20^{20}+1}=\frac{20^{20}+20}{20^{20}+1}=\frac{20^{20}+1+19}{20^{20}+1}=\frac{20^{20}+1}{20^{20}+1}+\frac{19}{20^{20}+1}=1+\frac{19}{20^{20}+1}\)
\(20B=\frac{20\left(20^{20}+1\right)}{20^{21}+1}=\frac{20^{21}+20}{20^{21}+1}=\frac{20^{21}+1+19}{20^{21}+1}=\frac{20^{21}+1}{20^{21}+1}+\frac{19}{20^{21}+1}=1+\frac{19}{20^{21}+1}\)
Vì 2020+1<2021+1
\(\Rightarrow\frac{19}{20^{20}+1}>\frac{19}{20^{21}+1}\)
\(\Rightarrow1+\frac{19}{20^{20}+1}>1+\frac{19}{20^{21}+1}\)
\(\Rightarrow20A>20B\)
\(\Rightarrow A>B\)