Cho tam giác ABC nhọn , đường cao BH , CK cắt nhau tại E . Qua B kẻ đường thẳng Bx vuông góc với BA , qua C kẻ đường thẳng Cy vuông góc với AC , Bx và Cy cắt nhau tại D
a. Tứ giác BDCE là hình gì
b. Gọi M là trung điểm của BC CMR M là trung điểm của ED
c. Nếu DE đi qua A thì ABC là tam giác gì
d. Tìm mối liên hệ giữa góc A và góc D của tứ giác ABCD
a: Xét tứ giác BDCE có
BD//CE
BE//CD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên BC cắt DE tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của DE
d: Xét tứ giác ABDC có
\(\widehat{ABD}+\widehat{ACD}=180^0\)
Do đó: ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{A}+\widehat{D}=180^0\)