K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

chu dep qua ha

Sửa đề: \(\left(m-1\right)x^2+3mx-4m+1=0\)

Ta có: \(\Delta=\left(3m\right)^2-4\cdot\left(-4m+1\right)\left(m-1\right)=9m^2-4\left(-4m^2+4m+m-1\right)\)

\(=9m^2+16m^2-20m+4\)

\(=25m^2-20m+4\)

\(=\left(5m-2\right)^2\ge0\forall m\)

hay phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\x_1\cdot x_2=\dfrac{-4m+1}{m-1}\end{matrix}\right.\)

Vì \(x_1+x_2=\dfrac{-3m}{m-1}\) và \(2x_1=3x_2\) nên ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=\dfrac{-6m}{m-1}\\2x_1-3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x_2=\dfrac{-6m}{m-1}\\x_1+x_2=\dfrac{-3m}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-6m}{5m-5}\\x_1=\dfrac{-9m}{5m-5}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=\dfrac{-4m+1}{m-1}\)

\(\Leftrightarrow\dfrac{-6m}{5m-5}\cdot\dfrac{-9m}{5m-5}=\dfrac{-4m+1}{m-1}\)

\(\Leftrightarrow\dfrac{54m^2}{5m-5}=\dfrac{-20m+5}{5m-5}\)

Suy ra: \(54m^2+20m-5=0\)

\(\Delta=20^2-4\cdot54\cdot\left(-5\right)=1480\)

Đến đây bạn tự làm tiếp nhé, chỉ cần tìm m và so sánh với ĐK m khác 1 thôi

NV
26 tháng 3 2022

Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)

\(\Rightarrow m=-8\)

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)=4m^2-8m+12\)

\(=4m^2-8m+4+8\)

\(=\left(2m-2\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=1\)

\(\Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=1\)

\(\Leftrightarrow\dfrac{2m-2}{x_1x_2-\left(x_1+x_2\right)+1}=1\)

\(\Leftrightarrow\dfrac{2m-2}{2m-3-2m+1}=1\)

\(\Leftrightarrow2m-2=1\cdot\left(-2\right)=-2\)

=>2m=0

hay m=0

28 tháng 5 2022

Ptr có `2` nghiệm `<=>\Delta' >= 0`

                             `<=>(-m)^2-(2m-3) >= 0`

                             `<=>m^2-2m+3 >= 0<=>(m-1)^2+2 >= 0` (LĐ)

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=2m-3):}`

Ta có:`1/[x_1-1]+1/[x_2-1]=1`

`<=>[x_2-1+x_1-1]/[(x_1-1)(x_2-1)]=1`

`<=>[x_1+x_2-2]/[x_1.x_2-x_1-x_2+1]=1`

`<=>[2m-2]/[2m-3-2m+1]=1

`<=>[2m-2]/[-2]=1`

`<=>2m-2=-2`

`<=>2m=0<=>m=0`

30 tháng 5 2021

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3