K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Giả sử 

\(a< b< c< 671\)

\(\Rightarrow a+b+c< 671.3\)

\(\Rightarrow a+b+c< 2013\)

Đặt \(d=a+b+c\)

\(\Rightarrow d< 2013\)

=> \(d\in\) dãy đã cho

=> đpcm

10 tháng 8 2016

chắc sai roày :(

9 tháng 8 2016

mink chiu

10 tháng 8 2016

Trần Việt Linh

10 tháng 8 2016

K ai giúp. Ta từ mặt luôn

10 tháng 6 2016

Với mọi số tự nhiên b , ta đều có b<b+1

Gán n = b+1 thì b<n (1)

Với mọi số tự nhiên a khác 0 suy ra 1<=a (2).

Nhân vế với vế của (1) và (2) (các vế là dương) ta luôn có: b<na ĐPCM.

Thực ra, bài toán này tồn tại vô số n để b<na mà n = b+1 chỉ là 1 họ nghiệm. Khi ta thay n = b+m (với m>0) thì đề bài luôn đúng.

10 tháng 6 2016

Bài lớp 9 thì mình không làm được.

Mình mới chỉ học lớp 6

9 tháng 11 2014

Ta có: n = 2.3.5.7.11.13. ...

Dễ thấy n chia hết cho 2 và không chia hết cho 4.

-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.

Vì n chẵn nên n+1 lẻ mà n+1= anên a lẻ, giả sử a=2k+1, khi đó:

n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.

Vậy n+1 không chính phương.

-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.

Vậy n-1 không chính phương

(Hình như bài này của lớp 8 nha)