Cho hình thang ABCD có hay đáy AB và CD . Biết AB = 15cm, CD = 20cm ; chiều cao hình thang là 14 cm . Hai đường chéo AC và BD cắt nhau ở E
a) Tính diện tích hình thang ABCD
b) Chứng minh tam giác AED và BEC có diện tích bằng nhau
c) Tính diện tích tam giác CDE
Ta kí hiệu S (MNP) là diện tích tam giác MNP
a) Diện tích hình thang ABCD = 1/2 (AB+CD)= 1/2 (50 + 20) . 14 = 245 (cm2)b,S(AED)=S(ACD) - S(ECD) S(BEC) = S(BCD) − S(ECD) mà S(ACD) = S(BCD) nên S(AED) = S(BEC).c, BE/DE = S(AEB) / S(AED) = S(CEB) / S(CED) = S(AEB) + S(CEB) / S(AED) + S(CED) = S(ABC) / S(ACD) = AB / CD = 3/4=> S(CEB) / S(CED) = 3/4 =>S(CEB) + S(CED) / S(CED) = 7/4 => S(DBC) / S(CED) = 7/4 => S(CED) = 4/7 . S(DBC)Ta có S(DBC) = 140 cm² nên S(CED) = 80 cm².