K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

 

5 tháng 8 2016

ĐỀ LỘN XỘN Z. 1/N(N+1) CHỨ

5 tháng 11 2015

=1-1/2+1/2-1/3+...+1/999-1/1000

=1-1/1000

=999/1000

20 tháng 12 2015

a=1/1x2+1/2x3+....+1/99x100

a=1-1/2+1/2-1/3+....+1/99-1/100

a=1-1/100

a=99/100

 

b=4/1x3+4/3x5+.....+4/51x53

b=2x(2/1x3+2/3x5+....+2/51x53)

b=2x(1-1/3+1/3-1/5+...+1/51-1/53)

b=2x(1-1/53)

b=2x52/53

b=104/53

 

đúng tick cho mình nha

23 tháng 3 2018

Bài này cũng dễ mà

18 tháng 7 2016

c) 

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

   \(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\frac{20}{21}\)

   \(=\frac{10}{21}\)

18 tháng 7 2016

\(A\)\(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)

DD
25 tháng 5 2021

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

DD
25 tháng 5 2021

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

9 tháng 6 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow M=1-\frac{1}{100}\)

\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)

8 tháng 6 2018

\(a,M=1-\frac{1}{100}=\frac{99}{100}\)

\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)

                  \(=1-\frac{1}{99}=\frac{98}{99}\)

   =>\(N=\frac{98}{99}:2=\frac{49}{99}\)

10 tháng 8 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{n\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(=\frac{n+1}{n+1}-\frac{1}{n+1}\)

\(=\frac{n}{n+1}\)