a/ Chứng minh phân số \(\frac{12n+1}{30n+2}\) tối giản
b/ Chứng minh \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở đây: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath hoặc
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Gọi d = ƯCLN (12n + 1, 30n + 1)
=> 12n + 1 chia hết cho d
và 30n + 1 chia hết cho d
=> 5(12n + 2) = 60n + 10 chia hết cho d
và 2(30n + 1) = 60n + 2 chia hết cho d
=> (60n + 10) - (60n + 2) = 8 chia hết cho d => d = 1, 2, 4 hoặc 8
Do 12n + 1 là số lẻ nên d không thể bằng 2, 4, 8 . vậy d = 1
=> phân số đã cho là phân số tối giản
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
k cho mk nha
Giải thích thêm: ta thấy \(\frac{1}{2^2}>\frac{1}{100}\),...,\(\frac{1}{10^2}=\frac{1}{100}\)=> từ \(\frac{1}{2^2}\)đến \(\frac{1}{10^2}\)có 5 cặp
\(\frac{1}{12^2}< \frac{1}{100}\),...,\(\frac{1}{100^2}< \frac{1}{100}\)=> từ \(\frac{1}{12^2}\)đến \(\frac{1}{100^2}\)có 45 cặp
=> 45>5 => tổng < 1/2 (kết hợp với cái kia nx thì bn mới hiểu)
Gọi d là UCLN của tử và mẫu
12n+1 chia hết cho d 60n+5 chia hết cho d
=>
30n+2 chia hết cho d 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
d thuộc Ư(1)=1
ƯCLN(12n+1;30n+2)=1
Vậy 12n+1/30n+2 là p/s tối giản
Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
Đáp số : cam : 48 cây
xoài : 20 cây
chanh : 52 cây.
ai trên 10 điểm thì mình nha
a) Đặt UCLN(12n + 1 ; 60n + 2) = d
12n + 1 chia hết cho d
=> 60n + 5 chia ehets cho d
30n + 2 chia hết cho d
60n + 4 chia hết cho d
< = > 1 chia hết cho d => d = 1
a) Gọi ƯCLN(12n+1;30n+2) = d
\(\Rightarrow\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\)
\(\Rightarrow\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}\)
=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
b) Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.........
\(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) ( đpcm )