Chứng minh rằng: \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n-2}\) chia hết cho \(x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n thuộc N
B=x^2 +2x +1 =(x+1)^2
\(A=x^{4n+2}+2.x^{2n+1}+1=\left(x^{2n+1}\right)^2+2.\left(x^{2n+1}\right)+1=\left(x^{2n+1}+1\right)^2\)
\(\dfrac{A}{B}=\left(\dfrac{x^{2n+1}+1}{x+1}\right)^2\)
với n =0 đúng
n >0 =>2n+1 >=3
=> x^(2n+1) =(x+1).g(x) => dpcm
Ta có :
\(x^{4n+2}+2x^{2n+1}+1=\left(x^{2n+1}\right)^2+2x^{2n+1}+1==\left(x^{2n+1}+1\right)^2\)
Vì \(x^{2n+1}+1⋮x+1\forall x;n\in Z\) nên \(\left(x^{2n+1}+1\right)^2⋮\left(x+1\right)^2=\forall x;n\in Z\)
Hay \(x^{4n+2}+2x^{2n+1}+1⋮x^2+2x+1\)
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ