Cho An = \(\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{3}}\). Chứng minh rằng An là số nguyên và tìm n để An chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
mà x là số nguyên
nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)
1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)
\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)
\(=32\)
b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)
Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)
Ta lại có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)
\(\Rightarrow1< A< 2\)
Vậy \(A\notin N\)
Đặt \(\hept{\begin{cases}1\sqrt{\left(3+2\sqrt{2}\right)^n}=a\:\left(a\ge\sqrt{3+2\sqrt{2}}\right)\\\sqrt{\left(3-2\sqrt{2}\right)^n}=b\:\left(b\ge\sqrt{3-2\sqrt{2}}\right)\end{cases}}\)
Ta có hệ
\(\hept{\begin{cases}a+b=6\\ab=1\end{cases}}\)
<=> \(\hept{\begin{cases}a=3+2\sqrt{2}\\b=3-2\sqrt{2}\end{cases}}\)
<=> n = 2
\(\frac{\left(2+\sqrt{3}\right)^n-\left(2-\sqrt{3}\right)^n}{2\sqrt{3}}=\frac{A+B\sqrt{3}-A+B\sqrt{3}}{2\sqrt{3}}=B\)( A,B thuộc Z )
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)