\(y=\frac{-1}{2}x^2\) :(P) \(y2=x-4\) :(D)
goi A(x1;y1) B(x2;y2) la hoanh do giao diem cua (P) va (D)
cm:y1+y2 -5(x1+x2) =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............
PTHĐGĐ là:
x^2-2mx+m-2=0
Δ=(-2m)^2-4(m-2)
=4m^2-4m+8
=(2m-1)^2+7>=7>0 với mọi m
=>Phuong trình luôn có hai nghiệm phân biệt
4(x1+x2)+y1+y2=1
=>4*2m+x1^2+x2^2=1
=>(x1+x2)^2-2x1x2+8m=1
=>(2m)^2-2(m-2)+8m-1=0
=>4m^2-2m+4+8m-1=0
=>4m^2+6m+3=0
=>\(m\in\varnothing\)
A, B thuộc (P), (d) ?
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=k\left(x-1\right)+2\Leftrightarrow x^2-kx+\left(k-2\right)=0\).
Ta có \(\Delta=k^2-4\left(k-2\right)=\left(k-2\right)^2+2>0\forall k\) nên phương trình trên luôn có hai nghiệm phân biệt.
Theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1x_2=k-2\\x_1+x_2=k\end{matrix}\right.\).
Ta có \(x_1^2+y_1+x_2^2+y_2=14\)
\(\Leftrightarrow2x_1^2+2x_2^2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow k^2-2\left(k-2\right)=7\Leftrightarrow k^2-2k-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=-1\\k=3\end{matrix}\right.\).
Vậy...
a/ Đương nhiên là bạn tự vẽ
b/ Phương trình hoành độ giao điểm:
\(\frac{1}{2}x^2=\frac{1}{4}x+\frac{3}{2}\Leftrightarrow2x^2-x-6=0\Rightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=-\frac{3}{2}\Rightarrow y_2=\frac{9}{8}\end{matrix}\right.\)
\(\Rightarrow T=\frac{2-\frac{3}{2}}{2+\frac{9}{8}}=\frac{4}{25}\)
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............