K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Bạn tự vẽ hình nhé!

a, (Mk nghĩ đề là góc B+D=180o)

 Xét tam giác ABC và EDC có:

          AB=DE (gt)

          DC=BC (gt)

           góc EDC=ABC = (180o- ADC)

=> tam giác ABC=EDC (c.g.c)

b, Tam giác ABC=EDC => AC=EC

=> tam giác ACE cân tại C=> góc DAC=DEC   (1)

Mặt khác hai tam giác trên bằng nhau => góc DEC=BAC   (2)

Từ (1) và (2) => góc DAC=BAC

=> AC là pg góc A

9 tháng 7 2017

Bạn có thể cho hình vẽ ko

18 tháng 11 2021

a, Ta có: 

\(\widehat{ADC}+\widehat{ABC}=180^o\left(1\right)\)

\(\widehat{ADC}+\widehat{EDC}=180^o\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{EDC}\) (Cùng bù \(\widehat{ADC}\))

Ta xét hai tam giác ABC và EDC:

BC = DC (giả thiết)

AB = DE (giả thiết)

\(\widehat{ABC}=\widehat{EDC}\) (chứng minh trên)

\(\Rightarrow\Delta ABC=\Delta DEC\left(c.g.c\right)\)

b) Ta có: Tam giác ABC = tam giác EDC (chứng minh trên)

=> AC = EC (Hai cạnh tương ứng bằng nhau)

=> Tam giác AEC cân tại A

\(\Rightarrow\widehat{CAE}=\widehat{CEA}\left(3\right)\)

Ta có: \(\widehat{CEA}=\widehat{CAB}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{CAE}=\widehat{CAB}\)

=> AC là tia phân giác của \(\widehat{DAB}\)

B C E D A

17 tháng 7 2016

Xin lỗi tớ phải tắt máy rồibucminh

20 tháng 6 2021

ý a, là chứng minh tam giác ABC=tam giác EDC hả?

a,theo giả thiết thì \(\left\{{}\begin{matrix}\angle\left(B\right)+\angle\left(ADC\right)=180^0\\CB=CD,DE=AB\left(1\right)\end{matrix}\right.\)

mà \(\angle\left(EDC\right)+\angle\left(ADC\right)=180^0\)(kề bù)

\(=>\angle\left(B\right)=\angle\left(EDC\right)\)(2)

từ(1)(2)\(=>\Delta ABC=\Delta EDC\left(c.g.c\right)\)

b,do \(\Delta ABC=\Delta EDC\)(cminh tại ý a)\(=>AC=CE\)=>\(\Delta ACE\) cân tại C

\(=>\angle\left(CAD\right)=\angle\left(CED\right)\left(\right)\left(3\right)\)

 do \(\Delta ABC=\Delta EDC=>\angle\left(BAC\right)=\angle\left(CED\right)\left(4\right)\)

(3)(4)\(=>\angle\left(CAD\right)=\angle\left(BAC\right)\)=>AC là phân giác góc A

12 tháng 9 2018

Bài 1:

a,xét tam giác ABC và tam giác EDC có:

AB=DE(gt)

DC=DC(gt)

góc EDC=ABC=(180 độ-ADC)

=>tam giác ABC=EDC(c.g.c)

b,tam giác ABC=EDC

=.AC=EC

=>tam giác ACE cân tại C

=> góc DAC=DEC(1)

Mặt khác 2 tam giác trên bằng nhau 

=>DAC=DEC(2)

Từ (1) và (2)=>DAC=BAC

=> góc AC là tia pg của A

---------------------------đợi mik nghiên cứu bài 2 đã chà nha học tốt---------------------------------

12 tháng 9 2018

AB//CD=>A+B=180 độ (hai góc trong cùng phía)(1)

A-D=20 độ(2)

Lấy (1)+(2)=>A+D+A-D=180 độ +20=> 2A=200=>A=100 độ

A+B=180 độ=>D=180 độ=>D=180 -A=180-100=80 độ

AB//CD>B+C=180 độ (hai góc trong cùng phía)

Hay AC+C=180 độ=>3C=180 độ =>C=60 độ

B+C=180 độ=>B=180 -C=180-60=120 độ

--------------------------------------------học tốt-------------------------------

31 tháng 12 2021

2: Xét tứ giác ABDE có 

C là trung điểm của BE

C là trung điểm của AD

Do đó: ABDE là hình bình hành

Suy ra: AB//DE

4 tháng 4 2016

mk chỉ làm đc a,b,d thui

4 tháng 4 2016

a)

xét tam giác ABD và tam giác EDC có

DA=DE(gt)

DB=DC(gt)

ADB=ADC(2 góc đđ)

suy ra ABD=EDC(c.g.c)

suy ra AB=EC

b)

theo câu a, ta có: AB=EC mà AB<AC suy ra EC<AC suy ra EAC<AEC

d)

ta có: DC=1/BC

DG=1/2CG suy ra DG=1/3DC

từ 2 điều trên suy ra: 

BC=2xDC=2x3xDG=6xDG

a: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

b: Ta có:ΔCAD=ΔCED

=>\(\widehat{CAD}=\widehat{CED}\)

mà \(\widehat{CAD}=90^0\)

nên \(\widehat{CED}=90^0\)

=>DE\(\perp\)BC

c: ta có: ΔCAD=ΔCED

=>DA=DE

=>D nằm trên đường trung trực của AE(1)

ta có: CA=CE
=>C nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra CD là đường trung trực của AE

d: Ta có: ΔACD vuông tại A

=>CD là cạnh lớn nhất trong ΔACD

=>CD>DA