K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

a) 20022005 = 20022004 . 2002 = 2002501.4 . ( ... 2 ) = ( .... 6 ) . ( .... 2 ) = ( .... 2 )

Vậy 20022005 có tận cùng là 2

b) 19921994 = 19921992 . 19922 = 1992498.4 . (....4 ) = ( ....6) . (.....4) = ( ...4)

Vậy 19921994 tận cùng là 4

c) 332003 . 342003 = ( 332000 . 333 ) . ( 342000 . 343 ) = [ 334.500 . (...7)] . [ 334.500 . ( ...4 )]

                             = [(...1) . (...7)] . [(...1) . (...4)] = (...7) . ( ....4 ) = (...8 )

Vậy 332003 . 342003 có tận cùng là 8

d) 282006 . 811003 = ( 282004 . 282 ) . (...1 )= [  28501.4. (...4)] . ( ... 1 )

                             = ( ... 6 ) . ( ...4 ) . ( ... 1 ) = (...4 ) . ( ...1 ) = ( ...4 )

Vậy 282006 . 811003 có tận cùng bằng 4

5 tháng 1 2018

Minh cung giong !hihi​haha

10 tháng 4 2016

156^7=........6

1061^9=......1

156^7+ 1061^9=........7

156^7. 1061^9=............6

26 tháng 3 2016

5^1992=(5^4)^498=625^498=0625^498=(.....0625)

vậy bốn chữ số tận cùng của 5^1992 là 0625

21 tháng 2 2017

ta có:5^8=390625

số có tận cùng là 0625 thì nâng lên bất cứ số nào cũng có tận cùng là 0625

ok 

5 tháng 6 2017

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

23 tháng 1 2017

2100=(220)5=(...76)5=(...76)

7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43

5^1992=(5^4)^498=625^498=0625^498=(...0625)

23 tháng 1 2017

Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7

Mk làm bằng  mẹo đó nha!

9 tháng 8 2018

a)(...4)

b)(...4)

c)(...6)

tích đúng cho mình nha

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)