-2 mux +1 phần 2 trừ (-2 mũ 2 )mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)
\(< -\frac{100}{200}=\frac{1}{2}=B\)
=> A < B
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
Đặt A= \(\frac{1}{2}\)-\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)-\(\frac{1}{2^2}\)+....+\(\frac{1}{2^2}\)
=> 2A=1-\(\frac{1}{2}\)+\(\frac{1}{2^2}\)-\(\frac{1}{23}\)+...+\(\frac{1}{2^{98}}\)
=> 2A+A=1+\(\frac{1}{2^{99}}\)
=> 3A=1+\(\frac{1}{2^{99}}\)
=> A= \(\frac{1}{3}\)+\(\frac{1}{3.2^{99}}\)
1) x3 - 3x2 = 0
<=> x2( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
2) 5x( x - 2020 ) - x + 2020 = 0
<=> 5x( x - 2020 ) - ( x - 2020 ) = 0
<=> ( x - 2020 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}\)
3) ( 3x - 5 )2 = ( x + 1 )2
<=> ( 3x - 5 )2 - ( x + 1 )2 = 0
<=> [ ( 3x - 5 ) - ( x + 1 ) ][ ( 3x - 5 ) + ( x + 1 ) ] = 0
<=> ( 3x - 5 - x - 1 )( 3x - 5 + x + 1 ) = 0
<=> ( 2x - 6 )( 4x - 4 ) = 0
<=> \(\orbr{\begin{cases}2x-6=0\\4x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
4) ( x2 - 2x )2 - 2( x - 1 )2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x + 1 ) + 2 = 0
<=> ( x2 - 2x )2 - 2x2 + 4x - 2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x ) = 0
<=> ( x2 - 2x )( x2 - 2x - 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-2x=0\\x^2-2x-2=0\end{cases}}\)
+) x2 - 2x = 0 <=> x( x - 1 ) = 0 <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) x2 - 2x - 2 = 0
<=> x2 - 2x + 1 - 3 = 0
<=> ( x2 - 2x + 1 ) = 3
<=> ( x - 1 )2 = ( ±√3 )2
<=> \(\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)
\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Gọi biểu thức trên là A, ta có:
3A = 1-2/3+3/3^2-...-100/3^99
3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]
4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]
Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99
3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012
3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]
4B = 3 - 1/3^99
=> 4B < 3 => B < 1/4 [2]
Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]
MỎI TAY QUỚ
tk nha
Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
-2 mũ 2 nhé bạn
(-2)2+1/2-[(-2)2 ]2=4+1/2-16=-23/2