đồng dư thức : chứng minh rằng
\(7^{2^{4n+1}}+4^{3^{4n+1}}-65\) chia hết cho 100 mọi người giúp mình với, thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?