K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ABED có 

AB//ED

AB=ED

Do đó: ABED là hình bình hành

Suy ra: Hai đường chéo AE và BD cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của AE

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Bài 2: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

30 tháng 8 2016

Đầu tiên bạn vẽ hình ra. 
*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự góc A2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì góc C=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

Bài 1: 
Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó:ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Bài 3: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)

nên ΔOAB cân tại O

Bài 3: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)

nên ΔOAB cân tại O

a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có

AD=BC

góc D=góc C

=>ΔAKD=ΔBHC

=>CH=DK

Xét tứ giác ABHK có

AB//HK

AK//HB

=>ABHK là hình bình hành

=>AB=HK

b: KH=AB=7cm

=>DK+HC=13-7=6cm

=>DK=HC=6/2=3cm

\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)

\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)

\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)

2 tháng 9 2016

Vì ABCD là hình thang cân nên AB=AD=BC

Tam giác ACD cân tạ C, ta có: góc DAC=góc ADC

Tam giác ABC cân tại B, ta có: góc BAC= góc ACB

Mặt khác: góc ACB= góc ACD (vì góc ACD= góc BAC (so le trong))= gócBCD/2 = góc ADC/2 

Ta có: góc DAB + góc ADC= góc DAC+góc BAC+góc ADC= 2.góc ADC+góc ACD/2=180 độ (vì AB//CD)→ góc ADC=72 độ