K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)

7 tháng 8 2023

a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)

b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)

      Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)

c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1

+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

 ⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên

7 tháng 8 2023

a) \(\overline{aaa}=100a+10a+a=111a\)

mà \(111=37.3⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)

\(\Rightarrow dpcm\)

 

TL :

aaa = a . 111

Ta có : 

111 = 3 . 37

=> aaa = a . 111 = a . 3 . 37

=> aaa luôn chi hết cho 37

Vậy số có dạng aaa luôn chia hết cho 37

30 tháng 7 2016

Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )

Nên: a=9 k1+ r

        b=9 k2+r

Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)

                       = 9 k1+r - 9 k2-r

                       = 9 k1 - 9 k2 + r-r

                       = 9.k1-9.k2

                       = 9. (k1+k2) chia hết cho 9

                       Hay (a-b) chia hết cho 9

Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9

Nhớ k đúng cho mình nha!

19 tháng 5 2019

Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)

Ta có a = 7m + r, b = 7n + r (m, n ∈ N)

Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)

Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7

14 tháng 12 2017

Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.

Nếu \(a=5k\Rightarrow a⋮5\)

Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)

\(\Rightarrow a+4⋮5\)

Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)

\(\Rightarrow a+3⋮5\)

Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)

\(\Rightarrow a+2⋮5\)

Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)

\(\Rightarrow a+1⋮5\)

Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.