Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{7n+4}{5n+3}\) luôn là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(7n+4,5n+3)
\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d
\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d
\(\Rightarrow\)35n+20-35n-21 \(⋮\) d
\(\Rightarrow\)-1 chia hết cho d hay d = -1
\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Gọi d là ƯCLN(7n+4,5n+3)
=>7n+4 chia hết cho d và 5n+3 chia hết cho d
=>5(7n+4)-7(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d hay d=-1
Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)
Làm ơn cho mình 1 đ ú n g với,chắc chắn mình đúng......................
Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )
Ta cso :
7n + 4 chia hết cho d
5n + 3 chia hết cho d
=> 5 ( 7n + 4 ) chia hết cho d
7 ( 5n + 3 ) chia hết cho d
=> 35 n + 20 chia hết cho d
35n + 21 chia hết cho d
=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
gọi d là ƯC(7n+4; 5n+3)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow35n+21-35n-20⋮d\)
\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n
Đặt d là ƯCLN (7n+4; 5n+3)
Ta có :{7n+4/5n+3 (=) {35n+20/35n+21
(=) (35n+21) - (35n+20) = 1 chia hết cho d
vậy phân số 7n+4/5n+3 là phân số tối giản
gọi d là ƯC(7n + 4; 5n + 3)
=> 7n + 4 và 5n + 3 ⋮ d
=> 5(7n + 4) và 7(5n + 3) ⋮ d
=> 35n + 20 và 35n + 21 ⋮ d
=> (35n + 21) - (35n +20) ⋮ d
=> 1 ⋮ d
=> d = + 1
=> 7n+4/5n+3 là phân số tối giản
Gọi a C Ư(7n+4;5n+3)
=>7n+4 và 5n+3 đều chia hết cho a
=>5(7n+4) và 7(5n+3) chia hết cho a
=>35n+20 và 35n+21 chia hết cho a
=>(35n+21) - (35n+20) chia hết cho a
=>1chia hết cho a
=>d C { + 1 }
Vậy7n+45n+3 là phân số tối giản
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản