6. Tính
\(A=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{31.34}\)
\(B=1-5+5^2-5^3+5^4-...-5^{39}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)
\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)
=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)
=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)
b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)
=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)
c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)
\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)
\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)
=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)
\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)
Chúc bạn học tốt
\(\dfrac{3}{1\times4}x+\dfrac{3}{4\times7}x+\dfrac{3}{7\times10}x+...+\dfrac{3}{31\times34}x=33\)
\(x\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{31\times34}\right)=33\)
\(x\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x\left(1-\dfrac{1}{34}\right)=33\)
\(\dfrac{33}{34}x=33\)
\(x=34\)
\(\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=33\)
\(x.3\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{31.34}\right)=33\)
\(x.3.\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x.\left(1-\dfrac{1}{34}\right)=33\)
\(x.\dfrac{33}{34}=33\)
\(x=33:\dfrac{33}{34}=33.\dfrac{34}{33}\)
\(x=34\)
Lời giải:
\(2A=\frac{4}{1.5}+\frac{6}{5.11}+\frac{8}{11.19}+\frac{10}{19.29}+\frac{12}{29.41}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{11}-\frac{1}{19}+...+\frac{1}{29}-\frac{1}{41}=1-\frac{1}{41}=\frac{40}{41}\)
\(\Rightarrow A=\frac{20}{21}\)
\(3B=\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{30}{31}\)
\(\Rightarrow B=\frac{10}{31}=\frac{20}{62}<\frac{20}{41}\)
Do đó $A>B$
A.2=4/1.5+6/5.11+...+12/29.41
A.2=1-1/5+1/5-1/11+...+1/29-1/41
A.2=1-1/41
A.2=40/41
A=20/41
B.3=3/1.4+6/4.10+...+12/29.31
B.3=1-1/4+1/4-1/10+...+1/29-1/31
B.3=1-1/31
B.3=30/31
B=10/31
Vì 20/41.10/31 nên A>B
\(A=\dfrac{2}{1.5}+\dfrac{3}{5.11}+\dfrac{4}{11.19}+\dfrac{5}{19.29}+\dfrac{6}{29.41}\)
\(\Rightarrow2A=\dfrac{4}{1.5}+\dfrac{6}{5.11}+\dfrac{8}{11.19}+\dfrac{10}{19.29}+\dfrac{12}{29.41}\)
\(\Rightarrow2A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{41}\)
\(\Rightarrow2A=1-\dfrac{1}{41}=\dfrac{40}{41}\)
\(\Rightarrow A=\dfrac{40}{41}:2=\dfrac{20}{41}\)(1)
\(B=\dfrac{1}{1.4}+\dfrac{2}{4.10}+\dfrac{3}{10.19}+\dfrac{4}{19.31}\)
\(\Rightarrow3B=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}\)
\(\Rightarrow3B=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}\)
\(\Rightarrow3B=\dfrac{1}{1}-\dfrac{1}{31}=\dfrac{30}{31}\)
\(\Rightarrow B=\dfrac{30}{31}:3=\dfrac{10}{31}\)
\(\Rightarrow B=\dfrac{2}{2}.\dfrac{10}{31}=\dfrac{20}{62}\)
+)Ta có:\(\dfrac{20}{62}< \dfrac{20}{41}\Rightarrow B< A\)
Hay A>B(ĐPCM)
Chúc bn học tốt
\(\dfrac{1}{2}-\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{4}{5}+\dfrac{5}{6}-\dfrac{6}{7}-\dfrac{6}{5}+\dfrac{4}{5}-\dfrac{3}{4}+\dfrac{2}{3}-\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{2}{3}+\dfrac{2}{3}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)+\left(-\dfrac{4}{5}+\dfrac{4}{5}\right)+\left(\dfrac{5}{6}-\dfrac{6}{7}-\dfrac{6}{5}\right)\)
\(=0+0+0+0-\dfrac{257}{210}\)
\(=\dfrac{257}{210}\)
A=1/15-1/16+1/16-1/17+...+1/2016-1/2017
A=1/15-1/2017
A=2002/30255
C=1/3[3/5.8+3/8.11+...+3/101.104]
C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]
C=1/3[1/5-1/104]
C=1/3.99/520
C=33/520
\(a.\dfrac{-4}{7}-\dfrac{5}{13}\times\dfrac{-39}{25}+\dfrac{-1}{42}:\dfrac{-5}{6}\)
\(=\dfrac{-4}{7}+\dfrac{3}{5}+\dfrac{1}{35}\) \(=\dfrac{1}{35}+\dfrac{1}{35}=\dfrac{2}{35}\)
\(b.\dfrac{2}{9}\times\left[\dfrac{4}{5}:\left(\dfrac{1}{5}-\dfrac{2}{15}\right)+1\dfrac{2}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left[\dfrac{4}{5}:\dfrac{1}{15}+\dfrac{5}{3}\right]-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\left(12+\dfrac{5}{3}\right)-\dfrac{-5}{27}\)
\(=\dfrac{2}{9}\times\dfrac{41}{3}-\dfrac{-5}{27}=\dfrac{82}{27}-\dfrac{-5}{27}=\dfrac{29}{9}\)
Bài 4:
\(\dfrac{3}{4}+y:\dfrac{2}{5}=\dfrac{37}{16}\)
\(\Rightarrow y:\dfrac{2}{5}=\dfrac{37}{16}-\dfrac{3}{4}\)
\(\Rightarrow y:\dfrac{2}{5}=\dfrac{25}{16}\)
\(\Rightarrow y=\dfrac{2}{5}\cdot\dfrac{25}{16}\)
\(\Rightarrow y=\dfrac{5}{8}\)
________________
\(456+y:87=23987\)
\(\Rightarrow y:87=23987-456\)
\(\Rightarrow y:87=23531\)
\(\Rightarrow y=23531\cdot87\)
\(\Rightarrow y=2047197\)
a)\(\dfrac{4}{5}\times\dfrac{5}{8}:\dfrac{4}{5}\)
\(=\left(\dfrac{4}{5}:\dfrac{4}{5}\right)\times\dfrac{5}{8}\)
\(=1\times\dfrac{5}{8}=\dfrac{5}{8}\)
b)\(\dfrac{5}{6}+\left(\dfrac{1}{2}:\dfrac{3}{2}+\dfrac{4}{5}\right)\)
\(=\dfrac{5}{6}+\left(\dfrac{1}{3}+\dfrac{4}{5}\right)\)
\(=\dfrac{5}{6}+\dfrac{17}{15}\)
\(=\dfrac{59}{30}\)
Bài 2:
a) \(\dfrac{3}{4}+y:\dfrac{2}{5}=\dfrac{37}{16}\)
\(y:\dfrac{2}{5}=\dfrac{37}{16}-\dfrac{3}{4}\)
\(y:\dfrac{2}{5}=\dfrac{25}{16}\)
\(y=\dfrac{25}{16}\times\dfrac{2}{5}\)
\(y=\dfrac{5}{8}\)
b)\(456+y:87=23987\)
\(y:87=23987-456\)
\(y:87=23531\)
\(y=23531\times87\)
\(y=2047197\)
a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)