K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

31 tháng 8 2023

(d) cắt trục hoành độ là 1: 

⇒ \(x=1\) 

Và hàm số: \(y=0\)

Thay \(x=1\) tại giá trị hàm số \(y=0\)

Ta có: 

\(y=\left(m-3\right)\cdot1+3m-1=0\)

\(\Leftrightarrow\left(m-3\right)+3m-1=0\)

\(\Leftrightarrow m-3+3m-1=0\)

\(\Leftrightarrow4m-4=0\)

\(\Leftrightarrow4m=4\)

\(\Leftrightarrow m=1\)

Vậy: ...

3: Thay x=1 và y=0 vào (d), ta được:

m-3+3m-1=0

=>4m-4=0

=>m=1

30 tháng 11 2023

Cắt đồ thị nào vậy bạn?

2 tháng 12 2023

đồ thị \(y=x^2+2mx+4\) nha 

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

15 tháng 8 2021

Hàm số \(y=\left(m-2\right)x+m^2-3\) cắt đồ thị tại điểm có hoành độ bằng 4

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(\Leftrightarrow0=4\left(m-2\right)+m^2-3\)

\(\Leftrightarrow m^2+4m-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

15 tháng 8 2021

Đồ thị cắt trục hoành tại điểm có hoành độ bằng 4 => A(4;0)

thay A(4;0) vào hàm số ta có:

\(\left(m-2\right).4+m^2-3=0\)

\(\Leftrightarrow4m-8+m^2-3=0\\ \Leftrightarrow m^2+4m-11=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

23 tháng 6 2021

1. hàm số nghịch biến khi

\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\) 

2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)

\(\Rightarrow y=0\)

Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)

3. pt hoành độ giao điểm của 

\(y=-x+2,và,y=2x-1\) là

\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)

A(1,1)

3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5

Thay x=-11 và y=0 vào (d), ta được:

-11(m-3)+2m-5=0

=>-11m+33+2m-5=0

=>-9m+28=0

=>m=28/9

=>(d): y=1/9x+56/9-5=1/9x+11/9

loading...

28 tháng 12 2020

- Xét phương trình hoành độ giao điểm :

\(x^2-3mx+m^2+1=mx+m^2\)

\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )

Có : \(\Delta^,=4m^2-1\)

- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành 

<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .

<=> \(\Delta^,=4m^2-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)

( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )

28 tháng 12 2020

cái trị tuyệt đối = 1 giải hộ mik vs