K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Giả sử \(C\left(c;-c;-3\right)\in d_1\)

           \(D\left(5d+16;d\right)\in d_2\)

\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)

                                    \(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)

                                    \(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)

                                    \(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)

Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng

Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)

11 tháng 12 2016

vãi cả hình bình hàng

 

NV
3 tháng 10 2019

\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(3;-9\right)\)

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

NV
21 tháng 3 2021

\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)

\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:

\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)

Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)

Phương trình đường thẳng d qua M và vuông góc AB có dạng:

\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)

Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân

Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)

22 tháng 6 2018

Đáp án D

20 tháng 10 2018

29 tháng 11 2019

4 tháng 9 2019

Đáp án : D

 

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

2 tháng 8 2021

`|AB| = \sqrt((1-3)^2+(-2-4)^2)=2\sqrt10`

`=>` PT: `(x-1)^2+(y+2)^2=40`

2 tháng 8 2021

Bán kính AB=\(\sqrt{1²+3²}\)=\(\sqrt{10}\)     

phương trình d.tron b.kính AB là

(x-1)²+(y+2)²=10