K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

_ Thể tích khối lăng trụ : 

Gọi D là trung điểm của BC ta có : \(BC\perp AD\Rightarrow BC\perp A'D\Rightarrow\widehat{ADA'}=60^0\)

Ta cso \(AA'=AD.\tan\widehat{ADA'}=\frac{3a}{2};S_{ABC}=\frac{a^2\sqrt{3}}{4}\)

Do đó \(V_{ABC.A'B'C'=}S_{ABC}.AA'=\frac{3a^2\sqrt{3}}{8}\)

- Bán kính mặt cầu ngoại tiếp tứ diện GABC :

Ta có I là giao điểm của GH với đường trung trực của AG trong mặt phẳng (AGH)

Gọi E là trung điểm của AG, ta có :

\(R=GI=\frac{GE.GA}{GH}=\frac{GA^2}{2GH}\)

Ta có :

\(GH=\frac{AA'}{3}=\frac{a}{2};AH=\frac{a\sqrt{3}}{3};GA^2=GH^2+AH^2=\frac{7a^2}{12}\)

Do đó \(R=\frac{7a^2}{2.12}.\frac{2}{a}=\frac{7a}{12}\)

2 tháng 4 2016

A B C D G H A' B' C' A E G H I

23 tháng 6 2017

Đáp án C

5 tháng 11 2019

Đáp án B

3 tháng 2 2019

Chọn C

21 tháng 8 2017

25 tháng 2 2017

8 tháng 3 2018

Đáp án A

Gọi M là trung điểm BC. Ta có  A ' M A ^   =   60 0

AM là trung tuyến trong tam giác đều cạnh a nên AM =  a 3 2

12 tháng 3 2017

Gọi M là trung điểm BC: BC = 2a; AG = 2 3 AI = 2 a 3 ; A ' A G ^ = 60 o .

Suy ra: A ' G = A G tan 60 o = 2 a 3 3

Ta có: V = S A B C . A ' G = 1 2 AB.AC.A'G

= 1 2 a. a 3 . 2 a 3 3 = a 3

Vậy  V 3 + V a 3 - 1 = a

Đáp án B

22 tháng 9 2023

a) Gọi \(I\) là trung điểm của \(BC\).

Tam giác \(ABC\) đều \( \Rightarrow AI \bot BC\)

Tam giác \(A'BC\) cân tại \(A' \Rightarrow A'I \bot BC\)

\( \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \left( {A'I,AI} \right) = \widehat {AI{\rm{A}}'} = {60^ \circ }\)

Tam giác \(ABC\) đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow AA' = AI.\tan \widehat {AI{\rm{A}}'} = \frac{{3a}}{2}\)

b) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\)

\({V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{3{a^3}\sqrt 3 }}{8}\)

23 tháng 6 2018

Đáp án C